Java Programming Standards & Reference Guide, Version 3.0

Java Programming Standards & Reference Guide, Version 3.0
[image:]

Java Programming Standards
&
Reference Guide
[bookmark: _Toc96146789][bookmark: _Toc96149134]
[bookmark: _GoBack]Version 3.0

Office of Information & Technology
Department of Veterans Affairs
AGE
Java Coding Standards Reference Guide, Version 2.0
[image: VA_OIT_PD_Email]
REVISION HISTORY
	DATE
	VER.
	DESCRIPTION
	AUTHOR
	CONTRIBUTORS

	9-26-14
	3.0
	Document is continually being edited for technical accuracy and compliance to JSC standards.
	Raymond Steele OI&T / PD
	JSC and several noteworthy Subject Matter Experts (SMEs)

	12-1-09
	2.0
	Document Updated
	Michael Huneycutt Sr
	

	4-7-05
	1.2
	Document Updated
	Sachin Sharma
	Mai L Vo
Lyn D Teague
Rajesh Somannair
Katherine Stark
Niharika Goyal
Ron Ruzbacki

	3-4-05
	1.0
	Document Created
	Sachin Sharma
	

[bookmark: _Toc516736751][bookmark: _Toc503846427]
[bookmark: _Toc390175440][bookmark: _Toc390175688]

ABSTRACT
The VA Java Development Community has been establishing standards, capturing industry best practices, and applying the insight of experienced (and seasoned) VA developers to develop this “Java Programming Standards & Reference Guide”.
The Java Standards Committee (JSC) team is encouraging the use of CheckStyle (in the Eclipse IDE environment) to quickly scan Java code, to locate Java programming standard errors, find inconsistencies, and generally help build program conformance.
The benefits of writing quality Java code infused with consistent coding and documentation standards is critical to the efforts of the Department of Veterans Affairs (VA).
This document stands for the quality, readability, consistency and maintainability of code development and it applies to all VA Java programmers (including contractors). Adherence to these standards and rules will become a measurement of the quality of their work.
NOTE: Good Java programming practices empower new personnel to quickly grasp the intention and purpose of the application, understand the style and theme being used, and construct enhancements that blend in well.
Please read and follow the standards, conventions, suggestions, and general concerns outlined in this document. This document will continue to evolve and is meant to be a helpful programmer’s tool.
All aspects of mature software development are implemented when new code can be written and Quality-Inspected quickly and thoroughly.
Most software is not maintained indefinitely by the original software developer. It is maintained by a multitude of contributing software engineers that in time will add patches, tighten the code, add functionality, and keep the applications current to the latest standards.
Feedback in the form of corrections or suggestions for improvement of this document is encouraged in order to remove useless parts and add new parts as the Java language itself evolves.
The VA JSC is comprised of volunteers that champion these standards to attain the industry proven benefits for VA.
The developed software must comply with the appropriate standards and conventions established for the programming language found in the Technical Reference Model/Standards Profile (TRMSP).
The VA requires a 508 compliance certificate along with other documentation to certify software compliance prior to acceptance.
Comments may be sent to the VA OI&T Java Standards Committee <VAOITJavaStandardsCommittee@va.gov>
"Any fool can write code that a computer can understand.
Good programmers write code that humans can understand." By Mr. Martin Fowler, On Refactoring: Improving the Design of Existing Code

TABLE OF CONTENTS
1	Overview	1
1.1	Introduction	1
1.2	Standards and Conventions Derivation	2
1.3	The Benefits of Using a Consistent Style	3
1.4	Intended Audience	3
1.5	Terminologies Used in This Guide	4
1.6	Technology	6
1.7	Acknowledgements	6
1.8	Source File Organization	7
1.9	Source File Naming	7
1.10	Package Declaration	7
2	Naming Conventions	8
2.1	Package Names	8
2.2	Type Names	8
2.3	Member Names	9
2.4	Method Names	10
2.5	Constant Names	11
2.6	Parameter Names	12
2.7	Static Variable Names	12
2.8	Specific Naming Conventions	13
3	Documentation	15
3.1	Beginning Comments	16
3.2	General Comment Formats	16
3.2.1	Block Comments	16
3.2.2	Single-Line Comments	17
3.2.3	Trailing Comments	18
3.2.4	End-Of-Line Comments	18
3.3	Comments with TODO or FIXME	19
3.4	Javadoc Comments	19
3.5	Type Javadoc	21
3.6	Method Javadoc	21
3.7	Variable Javadoc	23
3.8	Style Javadoc	23
4	Style	25
4.1	Coding Size Limits	25
4.2	Maximum Line Length	25
4.3	Maximum File Length	25
4.4	Maximum Anonymous Inner Class Length	26
4.5	Maximum Method Length	26
4.6	Maximum Number of Parameters	26
4.7	Whitespace	27
4.8	Operator Wrap	27
4.9	Tab Character	27
4.10	Modifier Order	28
5	Design	29
5.1	Simple Statements	29
5.2	Compound Statements	29
5.3	Return Statements	29
5.4	if, if-else, if else-if else Statements	30
5.5	For Statements	30
5.6	While Statements	31
5.7	Do-while Statements	31
5.8	Switch Statements	32
5.9	Try-catch Statements	33
6	Class Design	34
6.1	Design for Extension	34
6.2	Final classes	34
6.3	Utility classes	34
6.4	Coding Metrics - Number of Conditions	35
6.5	Coding Metrics - A Sample Violation:	35
6.6	Class Fan Out Complexity	35
6.7	Cyclomatic Complexity	36
6.8	Duplicate Code	36
7	Potential Coding Issues	37
7.1	Empty Statements/Empty Blocks	37
7.2	Equals and HashCode	38
7.3	Inner Assignment	40
Magic Number	41
7.4	Boolean expressions and returns	42
7.5	Nested Blocks	42
8	Imports	44
8.1	Wildcard imports	44
8.2	Illegal imports	44
8.3	Unused imports	45
9	CheckStyle Installation	46
10	Java Programming Rules	48
11	Naming Convention Reference	56
12	Java Section 508 Compliance	58
13	References	60
13.1	Web Resources	60
14	So what am I?	61

FIGURES & TABLES
Table 1 - Acronyms and Definitions	4
Figure 1 - Eclipse Screen Shot	46

Java Programming Standards & Reference Guide, Version 3.0
Java Coding Standards Reference Guide, Version 2.0
Java Programming Standards & Reference Guide, Version 3.0
[bookmark: _Toc245100980][bookmark: _Toc390175441][bookmark: _Toc390175689][bookmark: _Toc390178983]
i

iii
[bookmark: _Toc399504490]Overview
[bookmark: _Toc245100981][bookmark: _Toc390175442][bookmark: _Toc390175690][bookmark: _Toc390178984][bookmark: _Toc399504491]Introduction
This Java Programming Standards and Reference Guide has been compiled to provide current and future Java programmers with a set of coding conventions and standards to be followed when developing applications using the Java Programming Language.
This document reflects best practices for Java programming standards and coding conventions to follow, that by themselves do nothing. When combined with the following disciplined practices it will produce well-formed, functional, readable, and maintainable VA Java applications.
· Use proper design and analysis techniques.
· Participate in individual and group code reviews.
· Build upon test-driven development efforts.
· Use continuous integration and coordinated implementation practices.
· Test locally before deployment globally.
· Use known Good (Best) Business Practices and VA Lessons Learned.
· Look for Java programming standards to evolve and move with it.
Take a look at the big picture and see how your contributions and thoughtful application of these standards helps not only yourself, but the VA as a whole:
· Strongly improves development and inspection communications by offering a common reference point.
· Reduces the learning curve for new developers tasked with enhancements.
· Minimizes common coding issues / mistakes often made.
· Discourages improper coding artifacts that lead to defects and failures.
· Encourages code reuse thereby enhancing efficiency.
· Passes on quality Java programming applications and functionality onto the VA Enterprise Network and beyond.
· Bridges gaps between other departments and in commercial applications.
· Sets standards for present and future VA Java Programming development.

[bookmark: _Toc399504492]Standards and Conventions Derivation
The key to large-scale Programmer’s adoption of these VA Java programming conventions and standards, is to make them easy to deploy and relevant to those who must learn and use them.
JSC draws from the best of the industry-standard Java programming practices published by Oracle (formerly Sun). Adherence to proper coding conventions / standards can lead to higher quality software artifacts that are easier to support and maintain.
This document is broken down into four broad categories of standards:
	STANDARD
	DESCRIPTION

	NAMING (CONVENTION)
	The very first aspect of development that requires convention is how development artifacts are named.
Consistent and proper naming of packages, types, variables and other code artifacts will help to insure that any skilled Java Programmer can pick up a piece of code and understand its function.

	DOCUMENTATION
	All languages provide the ability to create (embed) inline comments that may be viewed while looking through the code.
Java has the ability to formally document code (in line) allowing it to be extracted and presented in the form of a browsable reference guide.

	STYLE
	The programming style for most programmers is a matter of preference.
However, there are certain coding / programming conventions that should be standardized to insure proper readability and to produce software artifacts that are easier to maintain.

	STATEMENT DESIGN
CLASS DESIGN
POTENTIAL CODING ISSUES
IMPORTS
	Though detailed design is outside of the scope of this document, there are some programming standards and conventions related to your design that when outlined, will help avoid defects.
An example is the use of Boolean. TRUE, Boolean. FALSE as opposed to new Boolean (true), new Boolean (false).

[bookmark: _Toc399504493]The Benefits of Using a Consistent Style
The importance and ultimate benefits of programming using a consistent style are: improved readability and greater maintainability.
A consistent programming style also facilitates the sharing of code among programmers, especially in dedicated teams of programmers all working on the same project.
A consistent programming style supports the use of (and development of) automated programming tools that can greatly speed up program development. These types of tools can automatically setup a structured format and frequently generate “pretty-print” source code for easier code analysis.
From a software group engineering process (and development perspective), a strong consistent style makes it easier to conduct code reviews. It is easier to see relationships, commands, loops and integrations. Furthermore, the group VA engineering practice of regular code reviews only reinforces the overwhelming need for all VA programmers (including contractors) to learn (and implement) consistent group styles.
In its truest sense, coding in a consistent style allows programmers to focus on the semantics of the code rather than wasting time trying to conjure up new formats.
NOTE: Consistency of coding style is more important than using a particular style. When a given situation falls outside of the scope of this document, experience and informed judgment should be used. The VA OI&T Java Standards Committee wants to know your concerns, suggestions, and coding problems.
[bookmark: _Toc245100982][bookmark: _Toc390175443][bookmark: _Toc390175691][bookmark: _Toc390178985][bookmark: _Toc399504494]Intended Audience
This document is primarily intended for Java programmers (developers and maintenance programmers) although it is also of interest to Program Managers, Systems Architects, Software Quality Assurance (SQA), and Software Technical Writers.
We fully realize that set, standardized programming guidelines will always be a compromise and may not equally apply to every situation you encounter. If a guideline rule exception is found and exercised (a special circumstance), it is highly recommended to annotate (make a note) that exception in the actual source code (or the project’s documentation) and then seek a waiver from the JSC group. You may reach the JSC and VA OI&T Java Standards Committee here: VAOITJavaStandards Committee@va.gov.
NOTE: The most important consideration is that agreed upon "best practices" for programming Java source code is unilaterally applied in a pre-defined (not arbitrary) manner (consistency is key).
[bookmark: _Toc243893551][bookmark: _Toc399504495]Terminologies Used in This Guide
Terms and acronyms used throughout this document are defined below.
[bookmark: _Ref235847208][bookmark: _Toc398293878]Table 1 - Acronyms and Definitions
	TERM
	DEFINITION

	IDE
	Integrated Development Environment

	Integration Test
	Exercising a software item, or collection of software items, as a whole. Integration testing is typically concerned with confirming behavior and outputs based on inputs or other stimuli, rather than leveraging knowledge of the implementation. Integration testing is frequently performed on the target hardware platform.

	JSC
	Java Standards Committee

	lowerCamelCase
	Naming starts with a lowercase letter and capitalizes the first letter of any subsequent word or acronym in the name

	NHD
	The National Help Desk. It is located at http://vaww.essremedy.va.gov
The National Help Desk line is: 888-596-4357

	OI&T
	Office of Information & Technology

	PD
	Product Development

	Programming
	Covers all Java programming including developer and maintenance programming

	Software Artifact
	A collection of software Items that comprise a computer program.

	Software Item
	Any identifiable part of a computer program, comprised of one or more software units.

	Software Unit
	An indecomposable collection of code. A software item that is not subdivided into other items.

	Tools
	An application used to assist in the development of code such as an IDE (e.g. Eclipse) or code analysis tool (e.g. Fortify or CheckStyle).

	Unit Test
	Exercising a software unit in isolation. Unit tests may leverage knowledge of the specific implementation, and typically does not need to be performed on the target hardware platform.

	UpperCamelCase
	Naming starts with an uppercase letter and capitalizes the first letter of any subsequent word or acronym in the name

	VA
	Department of Veterans Affairs

[bookmark: _Toc390175444][bookmark: _Toc390175692][bookmark: _Toc390178986]

[bookmark: _Toc399504496]Technology
There are a number of tools/technologies that can be used in conjunction with the Java Development Environment to guide Java Software Programmers.
In formulating this document the JSC considered various technologies and we studied their promoted and associated rules. To aid you, we have chosen to leverage CheckStyle (an open source technology) for defining and enforcing programming standards within Java Integrated Development Environments and Continuous Integration/Build environments.
CheckStyle will help us all implement greater uniformity of code and style.
Using CheckStyle’s code analysis functions (and possibly some other selected tools) programmers will discover inconsistencies and a myriad of “violations” that exist.
Not everything flagged is important or relevant to our intent. Some rules (and violations thereof) are critical to these standards and must be enforced.
The CheckStyle configuration file can be loaded into your IDE and used as an aid in standards compliance.
Note: Both the installation of, and use of CheckStyle is covered (see TOC for applicable CheckStyle sections and examples).
[bookmark: _Toc245100984][bookmark: _Toc390175445][bookmark: _Toc390175693][bookmark: _Toc390178987][bookmark: _Toc399504497]Acknowledgements
This document is also based on Oracle (formerly Sun) programming styles, conventions, and formats. There are many such Java coding examples included that should already be familiar to most Java developers.
The guidelines presented here were not created in a vacuum. In the process of writing this document, the group has read numerous amounts of existing (and popular) Java code conventions, Java coding articles, visited many Java Internet Blogs, participated in several Java forums and spoken in depth with our most seasoned VA programmers.
We have considered popular coding styles being used in current governmental and commercial practice. All this was in an effort to find common denominators and best practices for the VA. This work yielded Standards and Conventions that can be easily learned and with practice, become second nature.
This document builds upon and borrows heavily from several sources listed in the “References” section at the end of this document. The most heavily used sources are The Java Language Specification [1] and C++ Style Guide [3] (see References).
[bookmark: _Toc245100986][bookmark: _Toc390175446][bookmark: _Toc390175694][bookmark: _Toc390178988]The language and terminology used here, as well as several suggested naming conventions, are taken directly from The Java Language Specification [1].

[bookmark: _Toc399504498]Source File Organization
A Java Source File shall contain a single public class or interface.
When private classes and interfaces are associated with a public class, you can put them in the same source file as the public class.
A public class should be the first class or interface declaration in the file.
A Java source file shall contain the following elements, in the following order:
1. Package declaration.
2. Import declarations.
3. Class comment including description, author and version.
4. One or more class/interface declarations. Starting with the Public class or interface declaration.
[bookmark: _Toc245100988][bookmark: _Toc390175447][bookmark: _Toc390175695][bookmark: _Toc390178989][bookmark: _Toc399504499]Source File Naming
A Java source file name shall use the prefix of the name of the class or interface defined in the source file.
Java Source file names shall use the suffix: .java.
For Example:
Java Source File Name LayoutManager.java contains:

public class LayoutManager{
….
}
[bookmark: _Toc245100989][bookmark: _Toc390175696][bookmark: _Toc390178990][bookmark: _Toc399504500]Package Declaration
A Java source file shall contain a package declaration specifying the namespace to which the class belongs. Omitting the package declaration causes the types to be part of an unnamed package, with implementation-defined semantics.
For Example:
package gov.va.sample
[bookmark: _Toc245100991][bookmark: _Toc390175448][bookmark: _Toc390175697][bookmark: _Toc390178991][bookmark: _Toc399504501]Naming Conventions
Naming conventions make programs more understandable by making them easier to read and ensuring consistency.
Naming conventions also provide information about the function of the identifier-
For Example, Whether or not it is a constant, package, or class-which can be helpful in understanding the code.
The following lists the Java naming standards that shall be adhered to when coding Java applications.
[bookmark: _Toc245100992][bookmark: _Toc390175449][bookmark: _Toc390175698][bookmark: _Toc390178992][bookmark: _Toc399504502]Package Names
A package name shall contain only lower-case letters and digits with no underscore characters.
For Example:
java.lang
java.awt.image
dinosaur.theropod.velociraptor
A unique package prefix is constructed by using the components of the VA Internet domain name of the host site in reverse order. The top two levels of the package prefix shall be: gov.va.
For Example:
gov.va.security
[bookmark: 26821][bookmark: 26822][bookmark: 26823][bookmark: 26824]gov.va.med.pharmacy
Currently COM, EDU, GOV, MIL, NET, ORG, or one of the English two-letter codes identifying countries as specified in ISO Standard 3166, 1981 are considered valid for a top level package name.
For more information, refer to the documents stored at ftp://rs.internic.net/rfc (rfc920.txt and rfc1032.txt).
Rule:
Regex Check: ^[a-z]+(\.[a-z_][a-z0-9_]*)*$
Violation:
Error
[bookmark: _Toc245100994][bookmark: _Toc390175450][bookmark: _Toc390175699][bookmark: _Toc390178993][bookmark: _Toc399504503]Type Names
Type names (classes and interfaces) shall use the UpperCamelCase style. UpperCamelCase naming starts with an uppercase letter and capitalizes the first letter of any subsequent word in the name. If an acronym is used then only the first character in the acronym should be capitalized. All other characters in the name are lowercase. Underscore characters are not to be used to separate words.
Rule:
Regex Check: ^[A-Z][a-zA-Z0-9]*$
Violation:
Error
Class names shall be nouns or noun phrases. Classes that implement interfaces should be suffixed with Impl to differentiate with interface names.
Interface names depend on the salient purpose of the interface.
If the purpose is primarily to endow an object with a particular capability, then the name shall be an adjective (ending in -able or -ible if possible), that describes the capability (e.g., Searchable, Sortable, Network Accessible). Otherwise, use nouns or noun phrases.
For Example:
// GOOD type names:
LayoutManager, AWTException, ArrayIndexOutOfBoundsException
// BAD type names:
ManageLayout				// verb phrase
awtException				// first letter lower-case
array_out_of_bounds_exception	// underscores
[bookmark: _Toc245100996][bookmark: _Toc390175451][bookmark: _Toc390175700][bookmark: _Toc390178994][bookmark: _Toc399504504]Member Names
Member variables or non-static fields (reference types, or non-final primitive types) should follow the lowerCamelCase style. The lowerCamelCase style begins with a lowercase letter and capitalizes the first letter of any subsequent word or acronym in the name.
All other characters in member names should be lowercase.
Underscores or other special characters should not be used to separate words.
For Example:
boolean isResizable;
char recordDelimiter;
Rule:
Regex Check: ^[a-z][a-zA-Z0-9]*$
Violation:
Warning
Member names shall be nouns or noun phrases. One-character field names should be avoided except for temporary and looping variables. In these cases, use the following:
· b for a byte
· c for a char
· d for a double
· e for an Exception object
· f for a float
· g for a Graphics object
· i, j, k, m, n for integers
· p, q, r, s for String, StringBuffer, or char[] objects
An exception example may be where there is a strong convention being used like when a one-character name exists, such as x and y commonly used to denote screen coordinates.
The single character variable l (“el”) should not be used because it is hard to distinguish it from 1 (“one”) on some printers and displays.
[bookmark: _Toc245100998][bookmark: _Toc390175452][bookmark: _Toc390175701][bookmark: _Toc390178995][bookmark: _Toc399504505]Method Names
Method names should use the lowerCamelCase style. In Java, constructors are not considered methods; constructors of course always have the same name as the class.
Start with a lowercase letter and capitalize the first letter of any subsequent word in the name. If an acronym is used then only the first character in the acronym should be capitalized. All other characters in the name are lowercase.
Underscores or other special characters should not be used to separate words.
Rule:
Regex Check: ^[a-z][a-zA-Z0-9]*$
Violation:
Warning
Method names shall be imperative verbs or verb phrases.
NOTE: This is identical to the naming convention for non-constant fields. However, it will be easy to distinguish the two by their context (verbs or nouns).
For Example:
// GOOD method names:
showStatus(), drawCircle(), addLayoutComponent()

// BAD method names:
mouseButton() // noun phrase; doesn’t describe function
DrawCircle() // starts with upper-case letter
add_layout_component() // underscores

// The function of this method is unclear. Does it start the
// server running (better: startServer()), or test whether or not
// it is running (better: isServerRunning())?
serverRunning() // verb phrase, but not imperative
[bookmark: _Toc98043856][bookmark: _Toc245101000][bookmark: _Toc390175453][bookmark: _Toc390175702][bookmark: _Toc390178996][bookmark: _Toc399504506]Constant Names
It is important to differentiate class or instance constant variables from regular instance variables. The names of fields being used as constants should be all uppercase characters and individual words should be separated using an underscore.
For Example:
static final int HTTP_OK_RESPONSE = 200;
static final String GNUTELLA_CONNECT = “GNUTELLA CONNECT\n\n”;
The following are considered constants:
· All static final primitive types. (Remember that all interface fields are inherently static final.)
· All static final object reference types that are never followed by "." (dot).
· All static final arrays that are never followed by "[" (square bracket).
For Example:
MIN_VALUE, MAX_BUFFER_SIZE, OPTIONS_FILE_NAME
Rule:
Regex Check: ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$
Violation:
Warning
[bookmark: _Toc245101002][bookmark: _Toc390175454][bookmark: _Toc390175703][bookmark: _Toc390178997][bookmark: _Toc399504507]
Parameter Names
[bookmark: _Toc245101003]Parameter names should be short yet meaningful. The choice of a parameter name should indicate what is being passed.
Parameter names for public and protected methods often become part of the class/interface contract and are published in the Javadoc, therefore meaningful names are extremely important.
Names such as arg0 or single character parameter names should be avoided.
Parameter names should follow the lowerCamelCase style.
For Example:
void updatePatientData(String patientKey, String patientData) {
 ….
}
Rule:
Regex Check: ^[a-z][a-zA-Z0-9]*$
Violation:
Warning
[bookmark: _Toc245101004][bookmark: _Toc390175455][bookmark: _Toc390175704][bookmark: _Toc390178998][bookmark: _Toc399504508]Static Variable Names
Static Variable names should be short yet meaningful. The choice of a variable name should be mnemonic- that is, designed to indicate to the casual observer the intent of its use.
One-character variable names should be avoided.
Static variable name should follow the lowerCamelCase style.
For Example:
static String logFilePath = null;
Rule:
Regex Check: ^[a-z][a-zA-Z0-9]*$
Violation:
Warning
[bookmark: _Toc245101006][bookmark: _Toc390175456][bookmark: _Toc390175705][bookmark: _Toc390178999][bookmark: _Toc399504509]
Specific Naming Conventions
1. The terms get or set shall be used where an attribute is accessed directly.
This is the naming convention for accessor methods used by Oracle for the Java core packages and actually mandatory for Java and is part of the Bean Pattern.
A method to get or set a property of the class should be called getProperty() or setProperty() respectively, where Property is the name of the property.
For Example:
getHeight(), setHeight()
2. The is prefix shall be used for Boolean variables and methods.
This is the naming convention for Boolean methods and variables used by Oracle for the Java core packages.
When writing Java beans this convention is actually enforced for methods.
Using the is prefix solves a common problem of choosing bad Boolean names like status or flag. isStatus or isFlag simply does not fit, and the Programmer is forced to choose names that are more meaningful.
For Example:
isSet, isVisible, isFinished, isFound, isOpen
There are a few alternatives to the is prefix that works better in some situations. These are has, can, and should prefixes.
For Example:
Boolean hasLicense();
Boolean canEvaluate();
Boolean shouldAbort = false;
3. JFC (Java Swing) variables should be suffixed by the type of the JFC element.
This convention enhances readability since the name gives the user an immediate clue of the type of the variable and thereby the available resources of the object.
widthScale, nameTextField, leftScrollbar, mainPanel,
fileToggle, minLabel, printerDialog
4. Negated Boolean variable names should not be used.
A problem arises when the logical not operator is used and a double negative arises. It is not immediately apparent what !isNotError means.
boolean isError; // NOT: isNotError
boolean isFound; // NOT: isNotFound
5. Exception classes should be suffixed with Exception.
class AccessException
Exception classes are really not part of the main design of the program, and naming them like this allows them to stand out relative to the other classes.
NOTE: This standard is followed by Oracle (formerly Sun) in the basic Java library.
[bookmark: 272][bookmark: 1487][bookmark: 1656][bookmark: 1660][bookmark: 11733][bookmark: _Toc245101007][bookmark: _Toc390175457][bookmark: _Toc390175706][bookmark: _Toc390179000][bookmark: _Toc399504510]Documentation
Java supports two kinds of comments: documentation and general.
· General Comments are comments which are delimited by /*...*/, and //. General comments are meant to aid developers in further understanding code and implementation decisions.
· Documentation Comments (known as "doc comments") are comments, which adhere to the requirements of the Javadoc technology to allow documentation to be extracted to HTML files. Documentation comments are meant to describe the specification of the code and it is intended use from an implementation-free perspective.
Comments should be used to give overviews of code and provide additional information that is not readily available in the code itself.
Comments should contain only information that is relevant to reading and understanding the program. For Example, information about how the corresponding package is built or in what directory it resides should not be included as a comment.
Discussion of nontrivial or unobvious design decisions is appropriate, but avoid duplicating information that is present in (and clear from) the code.
It is too easy for redundant comments to get out of date.
NOTE: In general, avoid any comments that are likely to get out of date as the code evolves.
Comments should not be enclosed in large boxes drawn with asterisks or other characters and should not include special characters such as form-feed and backspace.
General guidelines for comment usage are listed below. These are described separately in the subsequent sections:
· Comments should help a reader understand the purpose of the code. They should guide the reader through the flow of the program, focusing especially on areas that might be confusing or obscure.
· Avoid comments that are obvious from the code, as in this famously bad comment example:
i = i + 1; // Add one to i
· Remember that misleading comments are worse than no comments at all.
· Avoid putting any information into comments that is likely to become out-of-date.
· Temporary comments that are expected to be changed, or removed later, shall be marked with the special tag “XXX:” so that they can easily be found afterwards.
· Ideally, all temporary comments shall have been removed by the time a program is ready to be shipped.
For Example:
// XXX: Change this to call viewOrder() when the bugs in it
// are fixed
NOTE: Please refer to listed References [11] and [13] for further guidance in proper comment placement and usage.
[bookmark: _Toc390175458][bookmark: _Toc390175707][bookmark: _Toc390179001][bookmark: _Toc399504511]Beginning Comments
Source files should begin with a comment that describes the class/interface and provides the name(s) of the author(s).
Some source code control systems also provide the ability to leverage tags that are replaced with the last update date and version number.
For Example:
/*
 * Description
 * Author
 * Usage Restrictions
 */
[bookmark: _Toc118890245][bookmark: _Toc245101009][bookmark: _Toc390175459][bookmark: _Toc390175708][bookmark: _Toc390179002][bookmark: _Toc399504512]General Comment Formats
Programs can have four styles of implementation comments:
· BLOCK COMMENTS
· SINGLE-LINE COMMENTS
· TRAILING COMMENTS
· END-OF-LINE COMMENTS
[bookmark: _Toc390175709][bookmark: _Toc390179003][bookmark: _Toc399504513]Block Comments
Block comments are used to provide descriptions of files, methods, data structures and algorithms.
Block comments may be used at the beginning of each file and before each method or they can be used in other places, such as within methods.
Block comments inside a function or method should be indented to the same level as the code they describe.
A block comment should be preceded by a blank line. This sets it apart from the rest of the code.

For Example:
/*
 * Here is a block comment.
 */
indent(1) is a program that makes code easier to read by inserting or deleting whitespaces. Block comments can start with /*-, which is recognized by indent(1) as the beginning of a block comment that should not be reformatted.
For Example:
/*-
 * Here is a block comment with some very special
 * formatting that I want indent(1) to ignore.
 *
 * one
 * two
 * three
 */
NOTE: If you do not use indent(1), you do not have to use /*- in your code or make any other concessions to the possibility that someone else might run indent(1) on your code.
[bookmark: _Toc399504514]Single-Line Comments
Short comments can appear on a single line indented to the level of the code that follows. If a comment cannot be written in a single line, it should follow the block comment format (see Section 3.1.1). A single-line comment should be preceded by a blank line, unless it is the first line following a “{“.
Here is an example of single-line comments in Java code (also see "Documentation Comments" in section 3.4.2):
if (condition) {
 /* Initial Comment */
 doSomething();

 /* Handle the condition. */
 ...
}
[bookmark: _Toc399504515] Trailing Comments
Trailing comments are very short comments that appear on the same line as the code they describe.
Trailing comments should be shifted far enough to the right in order to separate them from the statements.
Multiple trailing comments contained in a section of code should be indented to the same tab setting.
Here is a sample of a trailing comment used in good Java code:
For Example
if (a == 2) {
 return TRUE; /* special case */
} else {
 return isPrime(a); /* works only for odd a */
}
[bookmark: _Toc390175710][bookmark: _Toc390179004][bookmark: _Toc399504516] End-Of-Line Comments
The // comment delimiter can comment out a complete line or only a partial line.
The // comment delimiter should not be used on consecutive multiple lines for text comments.
However, it can be used in consecutive multiple lines for commenting out sections of code.
Examples of all three styles follow:
if (foo > 1) {
 // Do a double-flip.
 ...
} else {
 return false; // Explain why here.
}
//if (bar > 1) {
// // Do a triple-flip.
// ...
//}
//else {
// return false;
//}
[bookmark: _Toc390175711][bookmark: _Toc390179005][bookmark: _Toc399504517]
Comments with TODO or FIXME
In addition to general comments, some IDEs allow developers to place TODO and FIXME comments in code to indicate areas where there is additional work to be completed or a known issue needs to be corrected.
These types of comments indicate that the code is not complete.
Released source code shall not contain TODO and FIXME comments.
Rule:
Code check – looks for comments in the form:
//TODO: something needs to be done
//FIXME: something needs to be fixed
Violation:
Error
[bookmark: _Toc245101010][bookmark: _Toc390175460][bookmark: _Toc390175712][bookmark: _Toc390179006][bookmark: _Toc399504518]Javadoc Comments
Javadoc is not just another way of commenting your code. It provides a powerful mechanism for documenting code through Javadoc style comments that can then be extracted as documentation in the form of HTML pages using the Javadoc tool.
Classes, public methods, and important fields shall be commented using Javadoc style comments.
This does not mean that you should forget about normal commenting - normal comments and Javadoc comments can, and should, exist side by side in your program!
For Example:
Classes are commented as:
/**
* Car represents cars ... A description of the class
* should be place here. Note that the description begins
* on the second line and that there is a space between
* the asterisk and the text. Next we will add some fields
* indicating who the authors of the class are and
* other useful information. Notice the newline!
*
* @author Sachin Sharma
* @usage restrictions
*/
public class Car{
NOTE: There is no extra newline between the end of the Javadoc comment and the beginning of the class.
Methods may be commented as shown in this example:
/**
* A description of what the method does...
*
* @param n a description of the parameter
* @return a description of the return value
*/
public int factorial(int n){
Some, but not all, fields are commented using Javadoc:
/**
* Short description of the variable (one line)
*/
type variable;
What should be commented using Javadoc and what should be commented normally?
Well, think of it this way. Everything you comment using Javadoc will be seen on the document pages of your classes.
A person reading this documentation would be most interested in what the class represents, what methods it contains, how to use these methods (what type of arguments are to be given), and what they will return.
Some fields, such as public variables or constants, might also be of general interest.
You should assume that a person only wants to use your class without knowing anything about what it really looks like inside.
This is the information that you should provide, and this can be done using Javadoc comments.
NOTE: The things you should not comment using Javadoc are the things that are of interest to the Programmer who wants to modify the contents of your class.
Normal comments should help the reader of the code understand all its inner details and secrets.
[bookmark: _Toc245101011][bookmark: _Toc390175713][bookmark: _Toc390179007][bookmark: _Toc399504519]
Type Javadoc
It is important that every Type (Class or Interface) be documented outlining the role of the Type and its intended usage.
Types that have a package, protected or public scope, should include a Javadoc comment that describes the Type.
For Example
Refer to the example used in paragraph 3.3 as a good code example.
Rule:
Code check – looks for missing Javadoc comments Classes and
Interfaces which have a scope of package, protected or public.
Violation:
Warning
[bookmark: _Toc245101012][bookmark: _Toc390175714][bookmark: _Toc390179008][bookmark: _Toc399504520]Method Javadoc
A method that is scoped at a package, protected or public level should include a Javadoc comment.
This Javadoc comment should describe the method, outline the parameters, return types, and document the exceptions thrown from the method.
Methods that leverage the @Override tag and are not polymorphic in nature do not require a Javadoc comment.
Methods that implement an interface should use the @see tag to refer to the documentation in the interface.
For Example:
//use of @override tag:
public class Animal {
		/**
		* Returns the animal text sound.
		*
		* @return Animal Sound
		*/
		public String show animalSoundText(){
 return "animalSoundText";
 	}
}
public class Cat extends Animal{

 @Override
 public final String animalSoundText(){
 return "myyyaaww";
 }
}

Here is the interface that contains the method Javadoc.
For Example: The Description:
//use of @see tag:
/**
* A description of what the method does...
*
* @param purchaseAmount – Amount of Purchase
* @return Fees associated with purchase
*/
public int calculateFees(int purchaseAmount);

Here is a class method that implements the interface above:
/** {@inheritDoc}
* @see src.PurchaseChargesInterface#calculateFees (int purchaseAmount)
*/
public int calculateFees (int purchaseAmount) {
…
}
NOTE: This convention works with Javadoc but has a warning with VACheckStyle.xml that can be removed by adding the {@inheritDoc} annotation (see example above).
Rule:
Code check which looks for methods with a scope of package, protected or public that do not have a Javadoc comment or have a Javadoc comment that is missing the required annotations and does not leverage the @Override tag or @see tag to refer to an interface or super class that has the appropriate documentation.
Violation:
Warning
[bookmark: _Toc245101013][bookmark: _Toc390175715][bookmark: _Toc390179009][bookmark: _Toc399504521]Variable Javadoc
Variables with a package, protected or public scope should be documented to insure proper understanding and usage.
Though most variables are scoped private (to insure that variables are scoped properly and documented properly) it is important to provide a Javadoc comment for all visible variables.
For Example:
/**
* Description of the variable here.
*/
protected boolean isResizable;
Rule:
Code check which looks for class or interface level variables
which are of package, protected or public scope, but do not have
a Javadoc comment associated.
Violation:
Warning
[bookmark: _Toc245101014][bookmark: _Toc390175716][bookmark: _Toc390179010][bookmark: _Toc399504522]Style Javadoc
Javadoc comments should be well written and conform to the proper style as outlined in the referenced Javadoc documentation.
The following are general guidelines for producing well-formed and proper Javadoc comments in your code:
· The first sentence of a Javadoc comment should end with proper punctuation (That is a period, question mark, or exclamation mark, by default). Javadoc automatically places the first sentence in the method summary table and index. Without proper punctuation, the Javadoc may be malformed. All items eligible for the {@inheritDoc} tag are exempt from this requirement.
· Javadoc statements should have a description. This includes both completely empty Javadoc, and Javadoc with only tags such as @param and @return.
· HTML tags should be completed and well-formed.
· HTML tags should have corresponding end tags.
· The use of package level HTML documentation is not strictly enforced. However, if used, it should follow HTML rules and be well-formed.
· Only tags approved for use in Javadoc should be used when using HTML tags. The list of valid HTML tags can be found in the Javadoc reference documentation.
NOTE: These checks were patterned after the checks made by the DocCheck doclet available from Oracle.
Change DocCheck link to: http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#doccommentcheckingtool
Rule:
This is a code check that looks for Type, Method, and Variable Javadoc comments and insures that they are well formed and follow proper style.
Violation:
Warning
[bookmark: _Toc245101015][bookmark: _Toc390175461][bookmark: _Toc390175717][bookmark: _Toc390179011][bookmark: _Toc399504523]Style
Coding style deals with issues not related to design or documentation, but related to the style of coding. These standards address readability and maintainability of code based on the developers style of coding.
[bookmark: _Toc245101016][bookmark: _Toc390175462][bookmark: _Toc390175718][bookmark: _Toc390179012][bookmark: _Toc399504524]Coding Size Limits
It has been proven that code readability and maintenance can be impacted by the style of coding which results in excessively long source files or coding artifacts.
Some areas can result in defects downstream or maintenance problems, others have less of an impact, but need to be addressed.
This section deals with size limits on various aspects of Java programming.
[bookmark: _Toc245101018][bookmark: _Toc390175719][bookmark: _Toc390179013][bookmark: _Toc399504525]Maximum Line Length
Long lines may be hard to read in printouts or on the screen. If developers have limited screen space long lines may wrap or be cut-off making the code difficult to understand.
The maximum length of a line shall be 128 characters.
Hint:
Eclipse will always provide a line gutter.
Open Preferences, go to General -> Editors -> Text Editors . There’s a “Show print margin” setting. That will set the right gutter.
Rule:
Limit Character Count 128
Violation:
Error
[bookmark: _Toc245101020][bookmark: _Toc390175720][bookmark: _Toc390179014][bookmark: _Toc399504526]Maximum File Length
Source files that become excessively long can indicate a design issue and may be hard to understand or maintain.
Java source files shall contain 2000 or less lines of code.
Long classes require re-factoring into smaller classes.
Rule:
Line Count 2000
Violation:
Error
[bookmark: _Toc245101022][bookmark: _Toc390175721][bookmark: _Toc390179015][bookmark: _Toc399504527]Maximum Anonymous Inner Class Length
Anonymous inner classes should be used for highly specialized cases. If an anonymous inner class is used, the maximum number of lines of code in the class should be limited to 40.
Because an inner class is enclosed in a public class, very long inner classes can become hard to read and understand.
[bookmark: _Toc245101023]It may be difficult for the developer to follow the flow of the method where the class is defined.
Rule:
Line Count 40
Violation:
Warning
[bookmark: _Toc245101024][bookmark: _Toc390175722][bookmark: _Toc390179016][bookmark: _Toc399504528]Maximum Method Length
The body of a method shall be 150 lines or less.
Where a method involves a large number of statements it must be broken up into additional methods called by the primary method.
Long method bodies are hard to understand and maintain.
Method bodies that exceed 150 lines will be flagged as an error requiring refactoring into smaller methods.
Rule:
Line Count 150	
Violation:
Error
[bookmark: _Toc245101026][bookmark: _Toc390175723][bookmark: _Toc390179017][bookmark: _Toc399504529]Maximum Number of Parameters
As an object oriented programming language (OOPL), Java developers have a number of approaches for passing parameters into a constructor or method.
Methods and constructors that involve passing an excessive number of parameters can be hard to read and understand.
The maximum number of constructor or method parameters should be seven.
Methods and constructors exceeding this limit will be flagged with a warning and the developer should make every attempt to re-factor the code to reduce the number of parameters passed.
This may involve introduction of a class that can carry the desired parameters.
Rule:
Parameter Count 7
Violation:
Warning
[bookmark: _Toc245101028][bookmark: _Toc390175463][bookmark: _Toc390175724][bookmark: _Toc390179018][bookmark: _Toc399504530]Whitespace
The use of whitespace within Java code is a matter of personal preference and style. However, some areas can result in code that is difficult to read and maintain.
The following two standards are such areas.
[bookmark: _Toc245101029][bookmark: _Toc390175725][bookmark: _Toc390179019][bookmark: _Toc399504531]Operator Wrap
The use of operators can lead to a need to wrap them on a different line.
Defining a consistent mechanism for wrapping operators will help to insure that developers become accustomed to standard style for handling this area and improve overall readability and maintenance.
Operators that are used in a statement that is continued on more than one line should be the first item on the continuing line.
For Example:
//INCORRECT
Modifier.isPublic(member.getModifiers()) &&
Modifier.isPublic(clazz.getModifiers());
//CORRECT
Modifier.isPublic(member.getModifiers())
&& Modifier.isPublic(clazz.getModifiers());
Rule:
Code Check – Check for lines ending with &&, ||, & and similar
characters
Violation:
Warning
[bookmark: _Toc245101031][bookmark: _Toc390175726][bookmark: _Toc390179020][bookmark: _Toc399504532]Tab Character
Tab characters shall not be used in Java code.
The use of the tab character (‘\t’) in Java programming can have a hidden impact on the readability of the code. The use of the tab character may require developers to configure tab widths in their editor to properly view and edit code.
[bookmark: _Toc245101032]Additionally tabs can affect the source code control system and the ability to email code.
Hint: In Eclipse you can replace tabs with spaces by selecting:
Preferences->General->Editors->Text Editors Insert spaces for tabs
Rule:
Code Check – Existence of Character ‘\t’
Violation:
Error
[bookmark: _Toc390175464][bookmark: _Toc390175727][bookmark: _Toc390179021][bookmark: _Toc399504533]Modifier Order
The order in which code appears based on the modifiers is a matter of style. However consistently ordering code based on visibility helps improve readability and maintenance by structuring the code in a manner where those items that have public visibility and therefore are the most relevant to the consumer appear first in the source code.
The following order should be followed for best results:
1. public
2. protected
3. private
4. abstract
5. static
6. final
7. transient
8. volatile
9. synchronized
10. native
11. strictfp
Rule:
Code Check – the sequence of code based on scope is evaluated to ensure that it follows the outlined order with public scoped items appearing first.
Violation:
Warning
[bookmark: _Toc245101033][bookmark: _Toc390175465][bookmark: _Toc390175728][bookmark: _Toc390179022][bookmark: _Toc399504534]Design
[bookmark: _Toc245101035][bookmark: _Toc390175730][bookmark: _Toc390179024][bookmark: _Toc399504535]Simple Statements
A line of code shall contain at most one statement.
For Example:
a = b + c; count++;// WRONG
a = b + c; // RIGHT
count++; // RIGHT
Exceptions to this rule are compound looping statements.
[bookmark: _Hlt100140825][bookmark: _Hlt100140786][bookmark: _Hlt100140889][bookmark: _Toc118890254][bookmark: _Toc245101036][bookmark: _Toc390175731][bookmark: _Toc390179025][bookmark: _Toc399504536][bookmark: _Ref120931047][bookmark: _Ref120931078]Compound Statements
Compound statements are statements that contain lists of statements enclosed in braces "{ statements }".
Study the following sections for appropriate compound statement examples.
· The enclosed statements should be indented one more level than the compound statement.
· The opening brace should be at the end of the line that begins the compound statement.
· The closing brace should begin a line and be indented to the beginning of the compound statement.
· Braces should be used around all statements, even single statements, when they are part of a control structure, such as an if-else or for statement. This makes it easier to add statements without accidentally introducing bugs due to forgetting to add braces.
[bookmark: _Toc118890255]For Example
for (int i=0; i<aVariable; i++) {
		doSomething(i);
}
[bookmark: _Toc245101037][bookmark: _Toc390175732][bookmark: _Toc390179026][bookmark: _Toc399504537]Return Statements
A return statement within a value should not use parentheses unless they make the return value more obvious in some way.
For Example:
//Correct
return myDisk.size();
return (size ? size : defaultSize);
//Incorrect
return (myDisk.size());
[bookmark: _Toc118890256][bookmark: _Toc245101038][bookmark: _Toc390175733][bookmark: _Toc390179027][bookmark: _Toc399504538]if, if-else, if else-if else Statements
The if-else class of statements should be structured in the following form:
if (condition) {
		statements;
}
if (condition) {
		statements;
} else {
		statements;
}
if (condition) {
		statements;
} else if (condition) {
		statements;
} else {
		statements;
}
NOTE: if statements always use braces {}. Avoid the following error-prone form:
if (condition) //AVOID! THIS OMITS THE BRACES {}!
statement;
[bookmark: _Toc118890257][bookmark: _Toc245101039][bookmark: _Toc390175734][bookmark: _Toc390179028][bookmark: _Toc399504539]For Statements
A for statement should have the following form:
for (initialization; condition; update) {
		statements;
}
An empty for statement (one in which all the work is done in the initialization, condition, and update clauses) should have the following form:
for (initialization; condition; update);
When using the comma operator in the initialization or update clause of a for statement, please avoid the complexity of using more than three variables.
If needed, use separate statements before the for loop (for the initialization clause) or at the end of the loop (for the update clause).

For Example:
//Incorrect
for (int i=1, j=1, k=1, m=1; condition; i++, j++, k++, m++) {
		…
}

//Correct
j=1;
k=1;
m=1;
for (i=1; condition; i++) {
		…
		j++;
		k++;
		m++;
}
[bookmark: _Toc390175735][bookmark: _Toc390179029][bookmark: _Toc118890258][bookmark: _Toc245101040][bookmark: _Toc399504540]While Statements
A while statement should have the following form:
while (condition) {
		statements;
}
An empty while statement should have the following form:
while (condition);
[bookmark: _Toc118890259][bookmark: _Toc245101041][bookmark: _Toc390175736][bookmark: _Toc390179030][bookmark: _Toc399504541]Do-while Statements
A do-while statement should have the following form:
do {
		statements;
} while (condition);
[bookmark: _Toc118890260][bookmark: _Toc245101042][bookmark: _Toc390175737][bookmark: _Toc390179031][bookmark: _Toc399504542]
Switch Statements
A switch statement should always include a default statement.
Switch statements without a default causes maintenance issues.
A switch statement without a default may be a defect in the code, resulting from a missing default or it may be intentional.
The problem is that a missing default does not convey the original intent. Additionally, a missed default may result in a code path not intended by the developer.
Rule:
Code Check – Look for switch statements where no default has been
provided.
Violation:
Warning
A switch statement should have the following form:
switch (condition) {
case ABC:
		statements;
		/* falls through */

case DEF:
		statements;
		break;

case XYZ:
		statements;
		break;

default:
		statements;
		break;
}
Every time a case falls through (doesn't include a break statement), add a comment where the break statement would normally be.
This is shown in the preceding code example with the /* falls through */ comment.
A switch statement should include a default case. The break in the default case is redundant, but it prevents a fall-through error if later another case is added.
[bookmark: _Toc118890261][bookmark: _Toc245101043][bookmark: _Toc390175738][bookmark: _Toc390179032][bookmark: _Toc399504543]Try-catch Statements
A try-catch statement should have the following form:
try {
	statements;
} catch (ExceptionClass e) {
	statements;
}
A try-catch statement may also be followed by finally, which executes regardless of whether or not the try block has completed successfully.
try {
	statements;
} catch (ExceptionClass e) {
	statements;
} finally {
	statements;
}
[bookmark: _Toc245101044][bookmark: _Toc390175467][bookmark: _Toc390175739][bookmark: _Toc390179033][bookmark: _Toc399504544]Class Design
[bookmark: _Toc245101045][bookmark: _Toc390175740][bookmark: _Toc390179034][bookmark: _Toc399504545]Design for Extension
Java is an object oriented language. Java classes should be designed with extension usage in mind.
Java classes that contain only non-private and non-static methods shall use an abstract, final, or have an implementation modifier.
A class that is not designed for an extension will be flagged with a warning to allow the developer to reconsider the programming approach.
Rule:
Code Check – Class has non-private or non-static methods and does
not have an implementation or is not declared abstract or final	
Violation:
Warning
[bookmark: _Toc245101046][bookmark: _Toc390175741][bookmark: _Toc390179035][bookmark: _Toc399504546]Final classes
A class that does not have a public constructor shall be marked with a final modifier.
This indicates that it is not intended to be extended and helps insure a proper understanding of the extensibility of the class.
Classes like this that do not declare the class final, will be marked with an error to help the developer re-evaluate whether the constructor needs to be marked protected and therefore extensible or final indicating that no specialization is expected.
For Example:
Public final class xyz{}
Rule:
Code Check – Class has only private constructors and is not marked final
Violation:
Error
[bookmark: _Toc245101047][bookmark: _Toc390175742][bookmark: _Toc390179036][bookmark: _Toc399504547]Utility classes
If a class has only public methods, it may be considered a utility class.
The constructors of a utility class shall be marked private or protected to ensure that it is not improperly used.
An error will be flagged where a utility class has exposed the constructor as public and yet all methods are marked static.
Rule:
Code Check – Class with only static methods and does not have constructors marked as private or protected.
Violation:
Error
[bookmark: _Toc245101050][bookmark: _Toc390175468][bookmark: _Toc390175743][bookmark: _Toc390179037][bookmark: _Toc399504548][bookmark: _Toc245101051][bookmark: _Toc390175744][bookmark: _Toc390179038]Coding Metrics - Number of Conditions
The maximum number of Boolean conditions in a given expression should be 5.
Expressions which have a large number of Boolean conditions chain together by &&, ||, &, | or ^ can result in code that is hard to read and maintain.
If it is necessary to have more than 5 Boolean conditions, then it is recommended that the code should be broken up to make it more readable and easier to maintain.
[bookmark: _Toc399504549]Coding Metrics - A Sample Violation:
if ((a == b || b == c) &&c==d && (d == e || f == e) && x==y) {
Remediation:
if ((a == b || b == c) {
 If (c==d && (d != e && f != e) && x==y) {
Rule:
Limit on Conditions in a single Expression 5
Violation:
[bookmark: _Toc245101052]Warning
[bookmark: _Toc390175745][bookmark: _Toc390179039][bookmark: _Toc399504550]Class Fan Out Complexity
A class should be dependent on 20 or fewer classes.
A factor of code complexity and overall maintenance complexity is the number of classes that a given class depends on. A class that has a dependency on more than 20 other classes indicates a level of effort in maintenance four or more times that of a class that has a dependency on 20 or fewer classes.
As the number of dependencies increases, the required level of effort to maintain this code will increase by the number of dependencies - squared.
Rule:
Limit Class Dependency 20 Classes
Violation:
Warning
[bookmark: _Toc245101053][bookmark: _Toc390175746][bookmark: _Toc390179040][bookmark: _Toc399504551]Cyclomatic Complexity
Cyclomatic or conditional complexity provides a metric that helps identify the number of linearly independent paths that can be taken through a given class.
Higher numbers indicate greater code complexity and can indicate code that is difficult to read and maintain.
Conditional complexity is difficult to avoid, but the overall cyclomatic complexity of a class should be 10 or less.
Rule:
Limit Cyclomatic Complexity 10
Violation:
Warning
[bookmark: _Toc245101054][bookmark: _Toc390175747][bookmark: _Toc390179041][bookmark: _Toc399504552]Duplicate Code
Sequences of Java code should not be duplicated.
Duplication of code, unless through code generation, can lead to code that is difficult to maintain.
Even in the case of code generators, maintenance can become burdensome if the code needs to be maintained outside of the context of the code generator.
This is largely due to the independence of code segments. A required change may need to be applied to all copies of the code with the possibility of missing one. This would cause a deviation and over time could lead to further deviation.
Some duplication of code cannot always be avoided, but it should not be the norm.
Avoid duplication of code by properly designing classes to allow for re-use or by leveraging utility classes.
Rule:
Code Check – Search for sequences of Java code which differ only in indentation.
Violation:
Warning
[bookmark: _Toc245101055][bookmark: _Toc390175469][bookmark: _Toc390175748][bookmark: _Toc390179042][bookmark: _Toc399504553]Potential Coding Issues
[bookmark: _Toc245101056][bookmark: _Toc390175749][bookmark: _Toc390179043][bookmark: _Toc399504554]Empty Statements/Empty Blocks
Java code should not contain an empty statement. Though empty statements and empty blocks may have their place, they generally make the code difficult to read and understand.
The following example of an empty statement is legal and very concise:
for (; in.available() != 0; sbuf.append(in.readline());
However the following is much easier to read
while (in.available() != 0) {
		sbuf.append(in.readline());
}
Empty statements generally indicate a misplaced semicolon and can point to a potential defect.
For Example:
for (int i=0; i<; i++); <- Problem
Var[i]=”Some value”;
The above example points to two statements that should be linked, but are not because of the misplaced semicolon.
Empty blocks like empty statements may be valid, but generally point to potential problems.
An example of an empty block most commonly seen is the empty catch block.
Though there are valid cases when this is used such as ignoring exceptions in special cases, it does not indicate to other developers if this was intentional or a coding mistake.
Java code should not contain an empty block.
Empty blocks do not promote code readability and may create maintenance problems as other developers try to understand the intention of the empty block.
Empty Block Example:
for (int i=0; i<x; i++) {} <- Empty
try {
….do something…
} catch (Exception e) {} <- Empty

Rule:
Code Check – looks for cases where there are statements with no action or blocks that have no action.
Violation:
Warning
[bookmark: _Toc245101057][bookmark: _Toc390175750][bookmark: _Toc390179044][bookmark: _Toc399504555]Equals and HashCode
A common coding problem is overriding the implementation of equals() but failing to also override the used hashCode().
The contract of the equals() method depends on the hashCode() and therefore when overriding one the other should be overridden to provide clarity of intent in the code and to enforce the contract.
Failure to properly implement equals() and hashCode() can lead to problems in other areas of the code which depend on these two methods.
For Example:
//Incorrect
public class CustomerID {
 private long crmID;
 private int nameSpace;

 public CustomerID(long crmID, int nameSpace) {
 super();
 this.crmID = crmID;
 this.nameSpace = nameSpace;
 }

 public boolean equals(Object obj) {
 //null instanceof Object will always return false
 if (!(obj instanceof CustomerID)) {
 return false;
		}
 if (obj == this) {
 return true;
		}
 return this.crmID == ((CustomerID) obj).crmID &&
 this.nameSpace == ((CustomerID) obj).nameSpace;
 }

 public static void main(String[] args) {
 Map m = new HashMap();
 m.put(new CustomerID(2345891234L,0),"Jeff Smith");
 System.out.println(m.get(new CustomerID(2345891234L,0)));
 }

}
If you compiled and ran the above code, the output result is
null
What is wrong with this?
· The two instances of CustomerID are logically equal according to the class's equals method.
· Because the hashCode() method is not overridden, the identities for these two instances are not in common to the default hashCode implementation.
· Therefore, the Object.hashCode returns two seemingly random numbers instead of two equal numbers. Such behavior violates "Equal objects must have equal hash codes" rule defined in the hashCode contract.
//Correct:
Let us provide a simple hashCode() method to fix this problem:
public class CustomerID {
 private long crmID;
 private int nameSpace;

 public CustomerID(long crmID, int nameSpace) {
 super();
 this.crmID = crmID;
 this.nameSpace = nameSpace;
 }

 public boolean equals(Object obj) {
 //null instanceof Object will always return false
 if (!(obj instanceof CustomerID)) {
 return false;
		}
 if (obj == this) {
 return true;
		}
 return this.crmID == ((CustomerID) obj).crmID &&
 this.nameSpace == ((CustomerID) obj).nameSpace;
 }

 public int hashCode() {
 int result = 0;
 result = (int)(crmID/12) + nameSpace;
 return result;
 }

 public static void main(String[] args) {
 Map m = new HashMap();
 m.put(new CustomerID(2345891234L,0),"Jeff Smith");
 System.out.println(m.get(new CustomerID(2345891234L,0)));
 }

}
When you compile and run the above code, the output result is
Jeff Smith
Rule:
Code Check – Looks for override of the equals() method then checks that the hashCode() method has also be overridden.
Violation:
Warning
[bookmark: _Toc245101059][bookmark: _Toc390175751][bookmark: _Toc390179045][bookmark: _Toc399504556]Inner Assignment
Inner assignments should not be used.
The use of inner assignments though elegant and concise create both code readability problems and may present problems in the debugger.
For Example:
//Incorrect
string sPos = Integer.toString(pos = recordLocation + 1);
//Correct
pos = recordLocation + 1;
string sPos = Integer.toString(pos);
Though the incorrect example is perfectly legal, it may be difficult to read and within the debugger the value of what is passed in to toString() may not be visible.
Avoid such inner assignments with the exception of “for” loops where they are legal.
Rule:
Code Check – Looks for assignments that have inner assignments
embedded.
Violation:
Warning
[bookmark: _Toc245101060][bookmark: _Toc390175752][bookmark: _Toc390179046][bookmark: _Toc399504557]
Magic Number
A numeric literal should only be used in an assignment to a constant.
The use of numeric literals such as 0, 1, -1, 9999, etc. that are not defined as constants is considered a bad coding practice.
The use of magic numbers can lead to code that is harder to maintain as the developers have to search for occurrences of a magic number when trying to debug or modify code.
For Example:
//Incorrect
while (i<1000){
		…
}
//Correct
static final int BUILD_TEST_SET_SIZE = 1000;
while (i<BUILD_TEST_SET_SIZE){
		…
}
Rule:
Code Check – Looks for instances of Integer, Float, Double and Long where a number is used rather than a constant.
Violation:
Warning
[bookmark: _Toc245101063][bookmark: _Toc390175753][bookmark: _Toc390179047][bookmark: _Toc399504558]
Boolean expressions and returns
Complex Boolean expressions should not be used.
The use of complex Boolean expressions and/or return statements that involve complex Boolean expressions can lead to code that is hard to read and maintain.
An example of complex Boolean expressions and return statements include the following:
Complex Boolean Expression:
if ((a == true || !b) && (c|| rt.isValid() ||
		!rt.isValidMessage())){
 …
}
Complex Boolean Return:
if (rt.isValid()) {
 return false;
} else {
 return true;
}
This could be written like this:
 return rt.isValid();
Rule:
Code Check – Checks code for instance of Boolean expressions or Boolean return statements with too many terms.
Violation:
Warning
[bookmark: _Toc245101064][bookmark: _Toc390175754][bookmark: _Toc390179048][bookmark: _Toc399504559] Nested Blocks
Nested blocks should not be used.
Nested blocks often confuse the reader.
Most often nested blocks are the result of improper commenting or removal of debugging statements.
An example of a nested block:
public void someMethod() {
 string message=”Test Message”;
 {
 message=”My Message”;
 }
}
//if (logger.isDebugEnabled())
{
 Logger.debug(“This message”);
}
Rule:
Code Check – Code is searched for freely used blocks.
Violation:
Warning
[bookmark: _Toc245101065][bookmark: _Toc390175470][bookmark: _Toc390175755][bookmark: _Toc390179049][bookmark: _Toc399504560]Imports
[bookmark: _Toc245101066][bookmark: _Toc390175756][bookmark: _Toc390179050][bookmark: _Toc399504561]Wildcard imports
Import statements should contain fully qualified type names. Wildcard type-import-on-demand declarations (e.g. import java.util.*;) should not be used, unless Java reflection is used. Reasons for this include:
· Someone can later add new unexpected class files to the same package that you are importing. This new class can conflict with a type you are using from another package, thereby turning a previously correct program into an incorrect one without touching the program itself.
· Explicit class imports clearly convey to a reader the exact classes that are being used (and which classes are not being used).
· Explicit class imports provide better compile performance. While type-import-on-demand declarations are convenient for the Programmer and save a little bit of time initially, this time is paid for in increased compile time every time the file is compiled.
Most IDEs have a shortcut to format and organize the import statements (In Eclipse: Ctrl+Shift+O).
NOTE: Use this function regularly and certainly before releasing the code for testing.
Rule:
Code Check – Looks for imports that leverage the * notation to
import dependent Types.
Violation:
Warning
[bookmark: _Toc245101067][bookmark: _Toc390175757][bookmark: _Toc390179051][bookmark: _Toc399504562]Illegal imports
Import statements shall not contain a name of an Oracle.* package.
Though Java is portable between Java Runtime Environments (JRE), it is possible to implement code that is dependent on a specific JRE, using illegal imports.
For Example the direct import of Oracle.* packages will result in code that is no longer 100% pure Java, therefore limiting the portability between JREs.
Rule:
Code Check – Looks for imports of the Oracle.* packages within the
code.
Violation:
Error
[bookmark: _Toc245101068][bookmark: _Toc390175758][bookmark: _Toc390179052][bookmark: _Toc399504563]Unused imports
Java code should not contain unused import statements.
Most IDEs provide a mechanism for automatic addition of imports and removal of unused imports.
It is important to remove unused imports to eliminate artificial binding to Types (classes and interfaces) that are not used within the enclosing class.
Failure to remove unused imports can result in code that does not compile or drives developers to include class libraries that are not actually required.
Rule:
Code Check – Looks for instance of imports with the following characteristics: Evaluates only direct imports, not wildcard imports such as java.io.*; An import duplicates another import; The class imported is from the java.lang package; A class imported is from the same package; the class imported is not used within the enclosing class.
Violation:
Warning
[bookmark: _Toc245101070][bookmark: _Toc390175471][bookmark: _Toc390175759][bookmark: _Toc390179053][bookmark: _Toc399504564]CheckStyle Installation
The steps for installing CheckStyle may vary depending on the version of Eclipse or IBM Rational tool you are using.
Prior to installation, please review the CheckStyle home page at the following link: http://checkstyle.sourceforge.net/index.html for specific information about your IDE.
For Rational and Eclipse developers the CheckStyle plug-in can be downloaded from the following link: http://eclipse-cs.sourceforge.net/.
Installation of CheckStyle involves downloading the Eclipse plug-in and extracting the contents. The process is as follows:
1. Within the Eclipse workbench, select Help -> Software Updates -> Add/Remove Software (see Figure 1).
[image: When the Help menu item is selected, thirteen menu options are displayed. Software Updates is the eleventh menu option from the top. When selected, the fly out menu displays three options. Add/Remove software is the first option in the menu list.]
[bookmark: _Toc398293879]Figure 1 - Eclipse Screen Shot
2. Select Add and in the presented dialog select - Add Local.
3. Browse to the folder where CheckStyle was extracted.
4. Select it and click next.
5. Agree to the license agreement. This will add CheckStyle to your IDE.
CheckStyle comes with a CheckStyle configuration based on the Oracle (formerly Sun) Java Coding Standards.
To load the VA CheckStyle configuration download a copy of the VACheckStyle.xml file:http://trm.oit.va.gov/files/VACheckStyle.xml.
1. In the IDE, proceed to Preferences -> CheckStyle -> New.
2. Select External Configuration and provide the Name VACheckStyle.
3. Browse to where VACheckStyle.xml was saved and then select it. This will configure the VA CheckStyle.
4. Once it is configured, select it as the default by clicking the Set As Default button.
CheckStyle is now fully configured with the VA CheckStyle configuration based on the standards in this document.
CheckStyle operates in two modes:
· CONTINUAL
· AS NEEDED.
To activate continual checking right click on your project and select CheckStyle -> Activate.
1. To check code periodically as needed right click on your project and select CheckStyle -> Check code with CheckStyle.
2. In both cases, CheckStyle violations are displayed in the Problems View of Eclipse and Rational Tools.
NOTE: CheckStyle doesn’t allow tabs within source code.
Please use Eclipse replace tabs with spaces by:
Preferences->General->Editors->Text Editors Insert spaces for tabs
[bookmark: _Toc390175472][bookmark: _Toc390175760][bookmark: _Toc390179054][bookmark: _Toc399504565][bookmark: _Toc245101071]Java Programming Rules
The following table is a summary of the coding rules contained in this document.
· lowerCamelCase refers to a naming style that begins with a lower case letter and continues with capitalization of each subsequent word in the name.
· If an acronym is used then only the first character in the acronym should be capitalized. All other characters in the name should be lower case. Underscores or other special characters should not be used to separate words.
· UpperCamelCase is the same as described above except that the name begins with an upper case letter.
	CATEGORY
	RULE
	REQUIRED
	AUTO

	SOURCE FILE
	A Java source file shall contain a single public class or interface
	Yes
	No

	
	A public class or interface declaration should be the first class or declaration in the file
	No
	No

	
	A Java source file shall contain the following elements, in the following order:
1. Package declaration,
2. Import declarations,
3. Class/interface declarations.
	Yes
	No

	
	Java source file names shall use the prefix of the name of the class or interface
	Yes
	No

	
	Java source file names shall use the suffix: .java
	Yes
	No

	
	A Java source file shall contain a package declaration specifying the namespace to which the class belongs
	Yes
	No

	
	A package name shall contain only lower-case letters and digits with no underscore characters
	Yes
	Yes

	CATEGORY
	RULE
	REQUIRED
	AUTO

	
NAMING CONVENTIONS
	A package prefix shall be constructed by using the components of the VA Internet domain name of the host site in reverse order
	Yes
	No

	
	The top two levels of the package prefix shall be: gov.va.
	Yes
	No

	
	Type names (classes and interfaces) shall use the UpperCamelCase style
	Yes
	Yes

	
	Class names shall be nouns or noun phrases
	Yes
	No

	
	Member variables shall use the lowerCamelCase style
	Yes
	Yes

	
	Member non-static fields (reference types, or non-final primitive types) should use the lowerCamelCase style
	No
	Yes

	
	Underscores or other special characters should not be used to separate words in member names
	No
	Yes

	
	Member variable names shall be nouns or noun phrases
	Yes
	No

	
	Member non-static field names shall be nouns or noun phrases
	Yes
	No

	
	The single character variable l (“el”) should not be used
	No
	No

	
	Method names should use the lowerCamelCase style
	Yes
	No

	
	Method names shall be imperative verbs or verb phrases
	Yes
	No

	
	The accessor method to get a property of the class should be called getProperty() where Property is the name of the property
	No
	No

	
	The accessor method to set a property of the class should be called setProperty() where Property is the name of the property
	No
	No

	
	The accessor method to test a Boolean property of the class should be called isProperty(), where Property is the name of the property
	No
	No

	
	Constant variables should use all uppercase characters
	No
	Yes

	
	Individual words in a constant variable should be separated using an underscore character
	No
	Yes

	
	Parameter names should use the lowerCamelCase style
	No
	Yes

	
	Static variable names should use the lowerCamelCase style
	No
	Yes

	
	JFC (Java Swing) variables shall be suffixed by the type of the JFC element
	No
	No

	
	Negated Boolean variable names should not be used
	No
	No

	
	Exception classes should be suffixed with Exception
	No
	No

	CATEGORY
	RULE
	REQUIRED
	AUTO

	

COMMENTS
	Comments should not be enclosed in large boxes drawn with asterisks or other characters
	No
	No

	
	Comments should not include special characters
	No
	No

	
	Source files should begin with a comment that describes the class and provides the name(s) of the author(s)
	No
	No

	
	Block comments inside a function or method should be indented to the same level as the code they describe
	No
	No

	
	A block comment should be preceded by a blank line
	No
	No

	
	A single-line comment should be preceded by a blank line
	No
	No

	
	Multiple trailing comments contained in a section of code should be indented to the same tab setting
	No
	No

	
	The // comment delimiter should not be used on consecutive multiple lines for text comments
	No
	No

	
	Released source code shall not contain TODO and FIXME comments
	Yes
	Yes

	
	Classes, public methods, and important fields shall be commented using Javadoc style comments
	Yes
	Yes

	
	Types with a scope of package, protected or public should include Javadoc comments
	No
	Yes

	
	Methods that are scoped at a package, protected or public level should include a Javadoc comment that describes the method, outlines the parameters and return type and documents the exceptions thrown from the method
	No
	Yes

	
	Methods which implement an interface should use the @see tag to refer to the documentation in the interface
	No
	No

	
	Variables with a package, protected or public scope should be documented
	No
	Yes

	
	The first sentence of a Javadoc comment should end with proper punctuation
	No
	Yes

	
	Javadoc statements should have a description
	No
	Yes

	
	HTML tags should be completed and well-formed
	No
	Yes

	
	HTML tags should have corresponding end tags
	No
	Yes

	
	HTML tags used in comments should be valid Javadoc HTML tags
	No
	Yes

	CATEGORY
	RULE
	REQUIRED
	AUTO

	
CODING
	Java source files shall contain less than 2001 lines of code and the maximum length of a line shall be 128 characters
	Yes
	Yes

	
	An anonymous inner class should contain less than 41 lines of code
	No
	Yes

	
	A body of a method shall contain less than 151 lines of code
	Yes
	Yes

	
	The maximum number of parameters that can be passed into a constructor should be 7
	No
	Yes

	
	The maximum number of parameters that can be passed into a method should be 7
	No
	Yes

	
	Operators that are used in a statement that is continued on more than one line should be the first item on the continuing line
	No
	Yes

	
	The tab character (‘\t’) shall not be used in Java code
	Yes
	Yes

	
	Java modifiers should be arranged in source code in the following order: public, protected, private, abstract, static, final, transient, volatile, synchronized, native, strictfp
	No
	Yes

	
	A line of code shall contain at most one statement
	Yes
	No

	CATEGORY
	RULE
	REQUIRED
	AUTO

	
CLASS DESIGN
	Braces should be used around all statements, even single statements, when they are part of a control structure
	No
	No

	
	A switch statement should always include a default case
	No
	Yes

	
	Java classes that contain only non-private and non-static methods shall use an abstract, final, or have an implementation modifier
	No
	Yes

	
	A Java class that does not have a public constructor shall use a final modifier
	Yes
	Yes

	
	The constructors of a utility class shall be marked private or protected
	Yes
	Yes

	
	The maximum number of Boolean conditions in a given expression should be 5
	No
	Yes

	
	The maximum number of class dependencies for a class should be 20
	No
	Yes

	
	The cyclomatic complexity of a class should be less than 11
	No
	Yes

	
	Overriding the implementation of the equal() method must be done in conjunction with overriding the implementation of the hashcode() method
	No
	Yes

	
	Java code should not contain an empty statement
	No
	No

	
	Inner assignments should not be used
	No
	Yes

	
	A numeric literal should only be used in an assignment to a constant
	No
	Yes

	
	Complex Boolean expressions should not be used
	No
	Yes

	
	Import statements should contain fully qualified type names
	No
	Yes

	
	Import statements shall not contain a name of an Oracle.* package
	Yes
	Yes

	
	Classes and interfaces should only ‘include’ required packages.
	No
	Yes

[bookmark: _Toc245101073]
[bookmark: _Toc390175475][bookmark: _Toc390175763][bookmark: _Toc390179057][bookmark: _Toc399504566]Naming Convention Reference
	[bookmark: 200]IDENTIFIER TYPE
	RULES FOR NAMING
	EXAMPLES

	Package
	The prefix of a unique package name is always written in all-lowercase ASCII letters and should be one of the top-level domain names.
Subsequent components of the package name vary according to an organization's own internal naming conventions. Compound statements
Such conventions might specify that certain directory name components be division, department, project, machine, or login names.
	gov
gov.va
gov.va.vha

	Type (Class)
	Class names should be nouns, in mixed case with the first letter of each internal word capitalized.
Try to keep your class names simple and descriptive.
Use whole words-avoid acronyms and abbreviations (unless the abbreviation is much more widely used than the long form, such as URL or HTML).
	class Patient;
class PatientAllergy;

	Interface (Class)
	Interface names should be capitalized like class names.
	interface PatientDelegate;
interface Storing;

	
IDENTIFIER TYPE
	RULES FOR NAMING
	EXAMPLES

	Method
	Methods should be verbs, in mixed case with the first letter lowercase, with the first letter of each internal word capitalized.
	run();
runFast();
getBackground();

	Variable
	Except for variables, all instance, class, and class constants are in mixed case with a lowercase first letter. Internal words start with capital letters.
Variable names should not start with underscore _ or dollar sign $ characters, even though both are allowed.
Variable names should be short yet meaningful. The choice of a variable name should be mnemonic- that is, designed to indicate to the casual observer the intent of its use.
One-character variable names should be avoided except for temporary "throwaway" variables.
Common names for temporary variables are i, j, k, m, and n for integers; c, d, and e for characters.
	int i;
char c;
float myWidth;

	Constant
	The names of variables declared class constants and of ANSI constants should be all uppercase with words separated by underscores ("_"). (ANSI constants should be avoided, for ease of debugging.)

	static final int MIN_WIDTH = 4;
static final int MAX_WIDTH = 999;
static final int GET_THE_CPU = 1;

[bookmark: _Toc399504567]Java Section 508 Compliance
The Department of Veterans Affairs is committed to providing accessible electronic data and information technology to disabled Federal employees as well as disabled members of the public seeking information and services from VA. Software developers must design applications in a manner that will support Section 508 compliance.
Designing compliance into the application is far easier than correcting an application after the fact to meet Section 508 Guidelines.
The VA Section 508 site (http://vaww.section508.va.gov/SECTION508/) contains general information about Section 508 and specific documents required for submission to obtain conformance to Section 508.
The site also includes checklists (http://vaww.section508.va.gov/Standards_Checklist_Artifacts.asp) to assist with providing section 508 compliant products to include:
•	Software
•	Electronic Documents
•	Websites
•	Web Pages
•	Multimedia
•	Elearning Courses
These checklists include best practices for providing operating systems and software applications including web apps, applets, plug-ins, and applications required to use them (e.g. Flash, Java apps, media players) that conform to Section 508.
Please visit the VA Section 508 site for the latest information.

[bookmark: _Toc390175473][bookmark: _Toc390175761][bookmark: _Toc390179055][bookmark: _Toc399504568]References
[1] Gosling, J., Joy, B., Steele, G., “The Java Language
 Specification”, Addison-Wesley, 1996
[2] “Inner Classes Specification”.
[3] Reddy, A., “C++ Style Guide”, Oracle Internal Paper
[4] Skinner, G., Shah, S., Shannon, B., “C Style and Coding Standards”, Oracle Internal Paper,
[5] “Java Beans 1.0 Specification”, JavaSoft.
[6] Pike, R., “Notes on Programming in C”, Bell Labs technical paper.
[7] Cannon, L., Spencer, H., Keppel, D., et al, “Recommend C Style and Coding Standards”,
[8] Goldsmith, D., Palevich, J., “Unofficial C++ Style Guide”, develop, April 1990.
[9] Plocher, J., Byrne, S., Vinoski, S., C++ Programming Style With Rationale”, Oracle Internal
[10] ISO Standard 3166, 1981
[11] Baecker, R., Marcus, A., Human Factors and Typography for More Readable Programs,
[12] Kernighan, B., Ritchie, D., The C Programming Language, Prentice-Hall, 1978
[13] McConnell, Steven, Code Complete, Chapter 19: Self-Documenting Code
[14] Flanagan, David, Java in a Nutshell, O’Reilly & Associates, 1997, Chapter 5 – Inner Classes and Other New Language Features
[bookmark: _Toc245101072][bookmark: _Toc390175474][bookmark: _Toc390175762][bookmark: _Toc390179056][bookmark: _Toc399504569]Web Resources
Java Coding Conventions - Oracle Microsystems
Writing Javadoc Comments - Oracle Micrososystems
Java Programming Style Guide - David Wallace Croft
Java Style Guide - Catharina Candolin
Java Programming Style Guide - Java Ranch
Design by Contract – JavaWorld
StringBuffer Example Take Three – WikiWeb
[bookmark: _Appendix_A_-_Specific_Naming_Conven]Metrics for netBeans – netBeans
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367 – Oracle Code Conventions
www.javaprogrammingworld.com/java-coding-conventions.doc - Java Programming World
http://google-styleguide.googlecode.com/svn/trunk/javaguide.html - Google Style Guide

[bookmark: _Toc399504570]So what am I?
The following job descriptions are humorous and insightful.
And yes we do have a sense of humor too!
	JOB TITLE
	THE LOW DOWN

	COMPUTER SCIENTIST

	They write code. It may not be the prettiest or most well-factored code, but it gets the job done. It is not about the design of the code or "good" practices; it is about proving what they set out to prove.
A computer scientist is as much a mathematician as they are a technologist (they have 31337 math skills), they don't just need to know that stuff works, they have to prove it.
Communication and people skills are desirable traits, but not emphasized.
Software process and team dynamics skills are desirable traits, but not emphasized.
They have a good breadth of general knowledge for their whole field, but they deeply specialize in one or several narrow areas.
In these areas they are considered world-class experts.
They work on stuff related to their research in their personal time.

	PROGRAMMER

	Programmers write awesome code and make it clean, well-factored and error free are very important concerns, but not at the expense of getting the job done.
It is all about knowing the meaning of "good code" within their domain. They need to have some math skills, but this is not a paramount concern.
They need to know of good (best) solutions to problems, but they don't need to prove it is the best solution.
A good breadth of algorithmic knowledge is imperative.
They have a depth of skill in a wide area of expertise and have reasonably good knowledge of related areas as well.
Communication and people skills are desirable traits, but not emphasized.
Software process and team dynamics skills are desirable traits, but not emphasized.
They work on personal software projects they find of interest in their off time.

	DEVELOPER

	They write code and make it well-factored and clean (super important) but other factors often take priority.
Math skills are very much optional, but it does help to be aware of common problems and solutions related to the domain they are in.
Communication and people skills are paramount.
Process and team dynamics are bread and butter skills.
They are consummate generalists without any truly deep specializations.
They are expert at finding ways around problems and plugging components together to fulfill a set of requirements.
In their personal time they are either trying to build the next Facebook, or engage in activities that have nothing to do with programming, developing, or computer science.
· Developers are programmers to a greater or lesser extent.
· Computer scientists are programmers to a greater or lesser extent.
· Enterprise software is the domain of the developer.
· The Googles and Microsofts of the world are after programmers (and to lesser extent computer scientists). The developers who end up there become product managers.
· RnD and academia are the domain of the computer scientist (and to a lesser extent the Programmer)

	THE THING TO REMEMBER HERE
	Any title they call you is derogatory or "bad" in any way. One is not more or less desirable than any of the others. They are simply different dimensions (with some crossover) of the field we are all involved in.
Particular personalities will identify more with one but that does not mean that all three can't "bleed" into each other and combine favorably.
It is entirely possible to be both an awesome developer and a great Programmer (although it is difficult with so many important things to focus on).

	Here are the real definitions as publically seen.
http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Computer_programmer
http://en.wikipedia.org/wiki/Software_developer

Page 1 of 70

Page 3 of 70
image2.jpeg

image3.png
U.S. Department of Veterans Affairs

Office of Information and Technology
Product Development

image4.png
Java Browsing - METCProject/src/gov/milfutilities/ObjectFactory. java - MyEclipse Enterprise Workbench

Fl Edt Soce Refactor Navigate Search Project Run MyEclpse Window |3

e I I P | @ tyEcipse stert page
$l- - e @ viekome
& progecs 5)7 = O)# rackages 57| D Hob Contenis
2 e | @B oovmisercossrt ¥ 5
5% METCRroject — | oovmilservicesprd YR bionrieper
B £ qov.milservices.prt ey Assit, Ctrkeshift+L
(38 resources.jar - C\rogren Fles|GeruteclConn | S qovmilservices st Tips and Tricks,
(38 tjer - CProgram sl GenutecCommonttina: | S Qovmilserviees st i sheets
8 fsse.jar - CtiProgram Fles|Genuitec|Commonbir || i gov.milservices.sty lsstEntry

Manage MyEcipse Plug-ins.
Warking with Update Sites,

A e far - CPreram FilehGemter|Crmmordin: %)

< | >

) Objectactoryjavs £) adhessisva |)

package gov.mil.utilities;

B govimiites
. anarheondi | 2

) *smsonporte.
Worspace Updates

‘Abaut MyEcipse Enterprise Warkbench
@import java.lang.reflect.Constructor:[] —eeeeeeeeeeeee]

public class ObjectFactory
i
// single instance

private static ObjectFactory _instance = new ObjectFactoryl():

? private static final Class[] EMPTY CLASSES = new Class[0]:
B
* internal uses.
"

private ObjectFactory()(}

B

* Singleton

= console | [£! Froblems £7
46 ettors, 930 watnings, O others (Fiker matched 146 of 576 tems)
Descrption
& @ Errors (46 tems)
D Project property "XFire services.xml path” does ot refer to a vald il

Resowce | Path

METCProject

BHEG BB

& Checkfor Updates.

‘& Manage in Puse Explorer.

- e[

@ Myecipse v

~=0)t

Members 50

inport declretions
4© 9 _instance : ObjectFactory
45T EMPTY_CLASSES : class[]
a° ObjectFactory()

©° getinstanc()

1 newInstance(String)

@ newlnstance(String, Object[])
5 newintangellase)

2 Criaknzportery | @) entvseva |

Locat,

Type

Unknawn %prablemmarker problemmarker.name

@ Class ObjctFactory shoul be decered o Finl ObjectFacto... METCProjectfsrcl... ned Checistyl Problem
© Fie contain ta characters (s s the fstinstance) AbstractBas... METCProjectfsrcl... ne20 Checkstyl Problem
© Fie contain ta characters (s s the fstinstance) Addessjava METCProjectfsrcl... e 15 Checkstyle Problem
© Fie contain ta characters (s s the fstinstance) Addressuse... METCProjectfsrcl... e 13 Checkstyle Problem
© Fie contain ta characters (s s the fstinstance) BiletingPortl... METCProjectfsrcl... e 15 Checistyl Problem
© Fie contain ta characters (s s the fstinstance) BiletingReq... METCProject/srcl... e 14 Checistyl Problem
© Fie contain ta characters (s s the fstinstance) CrrcuunPo... METCProjectfsrcl... e 12 Checkstyl Problem
© Fie contain ta characters (s s the fstinstance) Entiyjava METCProjectfsrcl... e 15 Checkstyl Problem
© Fie contain ta characters (s s the fstinstance) HberatePe. . METCProjectfsrcl... e 32 Checistyl Problem
© Fie contain ta characters (s s the fstinstance) TnProcessin.. METCProjectfsrcl... ne7 Checkstyl Problem
© Fie contain ta characters (s s the fstinstance) Log#Logan... METCProjectfsrc... line 17 Checistyl Problem
writable Smartnsert | 1515

5[50 avamromsing |

BV e w0

jui

m

oo

I

@zm.. - @b

[

