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Documentation Revisions

The following table displays the revision history for this manual. Revisions to the documentation are based on patches and new versions released to the field.


[bookmark: _Toc202862995][bookmark: _Toc204421590][bookmark: _Toc167811500]Table i. Documentation revision history
	Date
	Description
	Author(s)

	04/2024
	XU-*8*791
	Redacted

	03/2022
	XU*8*749 -Updated documentation for the WL 12.2 release
	Redacted

	08/2020
	Updated documentation to split KAAJEE SSPI, KAAJEE Classic and KAAJEE SSOWAP
	Redacted

	07/2018
	Software and documentation for KAAJEE 1.2.x.x, referencing VistALink 1.6 and WebLogic 10.3.6 and higher.

	Redacted

	03/2011
	Software and documentation for KAAJEE 1.1.0.007 and KAAJEE Security Service Provider Interface (SSPI) 1.1.0.002, referencing VistALink 1.6 and WebLogic 9.2 and higher.
Software Version: 1.1.0.007
Security Service Provider Interface (SSPI) Version: 1.1.0.002
Kernel Patch: XU*8.0*504
	Redacted


	[bookmark: _Hlt200340856][bookmark: _Hlt200342617][bookmark: _Hlt200359926]05/2006
	Initial software and documentation for Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE) 1.0.0.019 and KAAJEE SSPIs 1.0.0.010, referencing VistALink 1.5 and WebLogic 8.1 (SP4 or higher).
Software Version: 1.0.0.019
SSPI Version 1.0.0.010
[image: information] REF: For a description of the current KAAJEE software version numbering scheme, please review the readme.txt file distributed with the KAAJEE software.
	Redacted 





Patch Revisions

For a complete list of patches related to this software, please refer to the Patch Module on FORUM.

	[image: information]
	NOTE: Kernel is the designated custodial software application for KAAJEE; however, KAAJEE comprises multiple patches and software releases from several HealtheVet-VistA applications.
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The intended audience of this manual is all key stakeholders. The primary stakeholder is Common Services. Additional stakeholders include:
· HealtheVet-VistA application developers of Web-based applications in the WebLogic Application Server environment.
· Information Resource Management (IRM) and Information Security Officers (ISOs) at Veterans Affairs Medical Centers (VAMCs) responsible for computer management and system security.
· Enterprise Product Support (EPS).
· VAMC personnel who will be using HealtheVet-VistA Web-based applications running in the WebLogic Application Server environment.


How to Use this Manual

This manual is divided into three major parts:
· User Guide—Provides general overview of the KAAJEE sub project.
· Developers Guide—Provides step-by-step instructions for HealtheVet-VistA developers to follow and Application Program Interfaces (APIs) to use when writing Web-based applications incorporating the KAAJEE authorization and authentication functionality.
· Systems Management Guide—Provides implementation, maintenance, and security overview for IRM and ISO personnel.

Throughout this manual, advice and instructions are offered regarding the use of KAAJEE software and the functionality it provides for HealtheVet-Veterans Health Information Systems and Technology Architecture (VistA) software products.

There are no special legal requirements involved in the use of KAAJEE-related software.

This manual uses several methods to highlight different aspects of the material:
· Various symbols/terms are used throughout the documentation to alert the reader to special information. The following table gives a description of each of these symbols/terms:
[bookmark: _Ref345831418][bookmark: _Toc18213793][bookmark: _Toc44314850][bookmark: _Toc52847865][bookmark: _Toc55877270][bookmark: _Toc83538896]

[bookmark: _Toc202862996][bookmark: _Toc167811501]Table ii. Documentation symbol/term descriptions
	Symbol
	Description

	[image: information]
	NOTE/REF: Used to inform the reader of general information including references to additional reading material.

	[image: caution]
	CAUTION or DISCLAIMER: Used to inform the reader to take special notice of critical information.



· Descriptive text is presented in a proportional font (as represented by this font).
· [bookmark: _Hlt425573944]"Snapshots" of computer online displays (i.e., roll-and-scroll screen captures/dialogues) and computer source code, if any, are shown in a non-proportional font and enclosed within a box.
· User's responses to online prompts and some software code reserved/key words will be bold typeface type.
· Author's comments, if any, are displayed in italics or as "callout" boxes.

	[image: Note]
	NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box, which point to specific areas of a displayed image.



· Java software code, variables, and file/folder names can be written in lower or mixed case.
· All uppercase is reserved for the representation of Mumps (M) code, variable names, or the formal name of options, field/file names, and security keys (e.g., the XUPROGMODE key).


Assumptions About the Reader

This manual is written with the assumption that the reader is familiar with the following:
· VistALink—VistA M Server and Application Server software
· Linux (i.e., Red Hat Enterprise ES 6.0 or higher) or Microsoft Windows environment
· Java Programming languageJava 2 Standard Edition (J2SE) Java Development Kit (JDK, a.k.a. Java Software Development Kit [SDK])
· WebLogic 10.3.6 and higher—Application servers
· Oracle Database 11g—Database (e.g., Security Service Provider Interface [SSPI] or Standard Data Services [SDS] 18.0 (or higher) database/tables)
· Oracle SQL*Plus Software 9.2.0.1.0 (or higher)

This manual provides an overall explanation of the installation procedures and functionality provided by the software; however, no attempt is made to explain how the overall HealtheVet-VistA programming system is integrated and maintained. Such methods and procedures are documented elsewhere. We suggest you look at the various VA home pages on the VA Intranet for a general orientation to HealtheVet-VistA the:
http://vista.med.va.gov/


[bookmark: _Toc397138035][bookmark: _Toc485620884][bookmark: _Toc4315560][bookmark: _Toc8096547][bookmark: _Toc15257685][bookmark: _Toc18284796][bookmark: _Ref23843544]Reference Materials

Readers who wish to learn more about KAAJEE should consult the following:
· Kernel Authentication & Authorization for J2EE (KAAJEE) Installation Guide
· Kernel Authentication & Authorization for J2EE (KAAJEE) Deployment Guide, this manual
· KAAJEE Web site: 
http://vista.med.va.gov/kernel/kaajee/index.asp
· Kernel Systems Management Guide
· VistALink Installation Guide
· VistALink System Management Guide
· VistALink Developer Guide

	[image: Note]
	REF: For more information on VistALink, please refer to the following Web address:
http://www.va.gov/vdl/application.asp?appid=163



HealtheVet-VistA documentation is made available online in Microsoft Word format and Adobe Acrobat Portable Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader (i.e., ACROREAD.EXE), which is freely distributed by Adobe Systems Incorporated at the following Web address:
http://www.adobe.com/

	[image: Note]
	REF: For more information on the use of the Adobe Acrobat Reader, please refer to the Adobe Acrobat Quick Guide at the following Web address:
http://vista.med.va.gov/iss/acrobat/index.asp



HealtheVet-VistA documentation can be downloaded from the Veterans Health Affairs (VHA) Software Document Library (VDL) Web site:
http://www.va.gov/vdl/

HealtheVet-VistA documentation and software can also be downloaded from the Enterprise Product Support (EPS) anonymous directories at the various Office of Information Field Offices (OIFOs) noted below:
· [bookmark: _Hlk163719502]Preferred Method	download.vista.med.va.gov

This method transmits the files from the first available File Transfer Protocol (FTP) server.


	[image: Caution]
	DISCLAIMER: The appearance of any external hyperlink references in this manual does not constitute endorsement by the Department of Veterans Affairs (VA) of this Web site or the information, products, or services contained therein. The VA does not exercise any editorial control over the information you may find at these locations. Such links are provided and are consistent with the stated purpose of this VA Intranet Service.
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This is the User Guide section of this supplemental documentation for Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE). It is intended for use in conjunction with the KAAJEE software. It details the user-related KAAJEE documentation (e.g., overview of the KAAJEE sub-project), management of KAAJEE-related software, etc.).
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[bookmark: _Toc75938758][bookmark: _Toc83538815][bookmark: _Toc84036950][bookmark: _Toc84044172][bookmark: _Toc202863070][bookmark: _Toc204421510][bookmark: _Toc167804759]Introduction

The Kernel Authentication and Authorization for Java (2) Enterprise Edition (KAAJEE) software was developed by Common Services Security Program. It was further supplemented by the implementation of the SSOi 2-Factor Authentication (2FA) Authorization requirement, producing a new Single Sign-On Web Application Plugin component – SSOWAP – which is part of this distribution. For ease of reference and understanding, references related to a specific functionality of the A/V codes validation version of KAAJEE is refered to as KAAJEE Classic.
  
Kernel is the designated custodial software application for KAAJEE; however, KAAJEE comprises multiple software and patches from several HealtheVet-VistA applications.

[bookmark: _Hlk520293687][bookmark: _Hlk520288791]KAAJEE addresses the Authentication and Authorization (AA) needs of HealtheVet-VistA Web-based applications in the Java 2 Platforms, Enterprise Edition (J2EE) environment. Over the long term, the Department of Veterans Affairs (VA) will provide Authentication and Authorization (AA) services to end-users enterprise wide; however, in the interim period, the Office of Information (OI) has a choice to make as to which AA mechanism(s) would be the most effective. This applies both to the needs of the applications themselves, as well as in anticipation of an expected migration to the future AA solution.

Most major J2EE application servers (e.g., WebLogic 12.2 and higher and Oracle's 11g) allow enterprises to override the default source of AA and replace it with custom, enterprise-specific sources for AA.

.

KAAJEE SSOWAP depends on the Personal Identification Verification (PIV) authentication by the Identity and Access Management (IAM) services, it then proceeds to authenticate provided data against a (Secure Token Service (STS) web service, followed by calling the Kernel authentication routine at the selected VistA M Server. If the user has been properly authenticated against a VistA M Server, SSOWAP dynamically creates a temporary username and password and populates this into a Structured Query Language (SQL) database via custom Security Service Provider Interfaces (SSPIs). This username and password is needed for the second level/phase/pass authentication for the J2EE container.


	[image: Note]
	[bookmark: _Ref83451028]REF: For more information on SSPIs and the overall KAAJEE-related AA process please refer to the "Error! Not a valid bookmark self-reference." topic in this documentation.



Currently, Kernel maintains the primary VistA and HealtheVet-VistA user store (i.e., NEW PERSON file [#200]), which provides both Authentication and Authorization (AA) services for all VistA and HealtheVet-VistA applications. By leveraging Kernel, KAAJEE authenticates and authorizes J2EE Web users by using Kernel's AA capabilities.

Some potential advantages to employing Kernel as the AA source include the following:
· Provides a single point of user management for existing and new HealtheVet-VistA applications.
· Allows the use of an existing credential—the Access and Verify code for Authentication and Authorization, rather than introducing a new security credential.
· Eliminates the need to maintain a mapping from WebLogic accounts to VistA M Server Kernel accounts.
· Avoids an additional user store, which simplifies the migration to the future AA solution.
· Partitions user authorizations by Veterans Health Administration (VHA) site.

Some potential KAAJEE strategy limitations due to employing Kernel as the AA source include the following:
· Kernel user accounts are not currently VA-wide; instead, they are facility-specific.
· Users must have an active VistA M Server Kernel account on some VistA system. Not all users fit this requirement (e.g., Veterans Affairs Central Office [VACO] users).
· This strategy introduces a dependency on the M system's availability, to perform virtually any function in a J2EE application.
· Correlating a user at one VA facility with the same user at a different VA facility is not supported, given the current lack of an enterprise-wide VA person identifier (e.g., VA-wide Person Identifier [VPID]).

	[image: Note]
	REF: KAAJEE Classic does not currently use the Department of Veterans Affairs Personal Identification (VPID), since this field is not currently populated enterprise-wide.



The KAAJEE software provides a Kernel-based Authentication and Authorization (AA) service for all HealtheVet-VistA Web-based applications in the J2EE/WebLogic environment.

KAAJEE is designed to run on the WebLogic 12.26 and higher.

This manual discusses in more detail the major software modules that, together, provide for KAAJEE functionality and how to deploy KAAJEE-enabled J2EE Form-based Authentication framework and the Security Service Provider Interfaces (SSPIs).

[bookmark: _Hlt200342642][bookmark: _Hlt200359921][bookmark: _Toc75938759]
Features

KAAJEE SSOWAP provides the following high-level features and functionality:
· Prompts users to enter their site of choice when they attempt to access a protected application resource for the first time during a user session.
· Validates the obtained STS certificate against the M system/division selected by the user at logon.
Ddisplays a list of M systems, by division, against which an end-user can log in.
· Returns all VistA M Server J2EE security keys and uses these as the basis for authorization decisions, as each security key is cached as a WebLogic group name. The KAAJEE SSPIs currently use an external Oracle 11g database to store this information for later authentication.

KAAJEE roles are defined by the list of roles in the web.xml file, VistA M Server J2EE security keys, and WebLogic group names found in your application's weblogic.xml file.

	[image: Note]
	REF: For more information on groups and roles, please refer to Chapter 4, "Role Design/Setup/Administration," in this manual.



· (optional) Maps J2EE security role names with security key role names. Through <security-role-assignment> tags (e.g., in weblogic.xml) the actual J2EE security role names can be different than the security key role names. This mapping is optional, because if the same names are used throughout, no <security-role-assignment> tags are required.

	[image: Note]
	REF: For a sample spreadsheet showing a mapping between WebLogic group names (i.e., principals) with J2EE security role names, please refer to "Appendix B—Mapping WebLogic Group Names with J2EE Security Role Names" in this manual.



· Transforms valid Access and Verify codes into a J2EE-compatible username (e.g., "kaaj_DUZ_8888~CMPSYS_523") and password, and submits the information to the J2EE container. It then passes the submitted information to the KAAJEE SSPIs, which validate the username and makes that username the current user.

Application developers can use the HttpServletRequest.getRemoteUser servlet method to return demographic data, such as the KAAJEE-created username (e.g., "kaaj_DUZ_8888~CMPSYS_523").

	[image: Note]
	REF: For more information on formatting J2EE usernames, please refer to the "J2EE Username Format" topic in Chapter 7, "Programming Guidelines," in this manual.



· Calls the KAAJEE SSPIs when the J2EE container checks user roles, which checks the role cache for the given user, created at user login. This allows user authorizations to be managed on the VistA M Server, and yet have fast response time in the J2EE application.
· Provides user demographics information, which includes the selected Division at login, user VPID, user number (or DUZ), and user Name, all which are available to the application after login via the Session object (cookie).

	[image: Note]
	REF: For more information on the user demographics provided, please refer to the following:
· "LoginUserInfoVO Object" topic in Chapter 7, "Programming Guidelines," in this manual.
· VistALink and the HealtheVet-VistA documentation can be downloaded from the VHA Software Document Library (VDL) Web site:
http://www.va.gov/vdl/



· Uses the SIGN-ON LOG file (#3.081) on the VistA M Server (i.e., the same M system used for user authentication) to track user logons and logoffs.

	[image: Note]
	REF: For more information on the SIGN-ON LOG file (#3.081), please refer to the Kernel Systems Management Guide.




	[image: Caution]
	J2EE container-managed enforcement of security, both programmatic and declarative, is fully enabled with KAAJEE.
Deployment of KAAJEE for a given J2EE application requires the KAAJEE components to be integrated with the application, because the J2EE servlet specification requires J2EE Form-based Authentication to run within the scope of the application using it.


[bookmark: _Toc54690134]

[bookmark: _Hlt200359918][bookmark: _Hlt200339780][bookmark: _Hlt200350483]

[bookmark: _Toc83538817][bookmark: _Toc84036952][bookmark: _Toc84044174][bookmark: _Toc202863072][bookmark: _Toc204421512][bookmark: _Toc204791841][bookmark: _Toc79579435][bookmark: _Toc167804760][bookmark: _Toc94491643][bookmark: _Toc202863073][bookmark: _Toc204421513]KAAJEE SSOWAP 2FA Login Process Flow Overview


[bookmark: _Toc167811455]Figure 1‑1 KAAJEE SSOWAP & J2EE Web-based application process overview diagram
[image: KAAJEE SSOWAP & J2EE Web-based application process overview diagram]



[bookmark: _Toc167804761]Using Industry Standard Form-based Authentication

[bookmark: _Hlk519265057]Figure 1‑2 shows what happens if you specify form-based authentication, in which you can customize the login screen and error pages that an HyperText Transfer Protocol (HTTP) browser presents to the end user. 


[bookmark: _Ref206311385][bookmark: _Toc167811456]Figure 1‑2. Industry Standard for Form-Based Authentication overview


[bookmark: wp483393][bookmark: wp159025]

With form-based authentication, the following things occur: 
· [bookmark: wp488120]A client requests access to a protected resource.
· [bookmark: wp488116]If the client is unauthenticated, the server redirects the client to a login page.
· [bookmark: wp488117]The client submits the login form to the server.
· [bookmark: wp488118]If the login succeeds, the server redirects the client to the resource. If the login fails, the client is redirected to an error page. [footnoteRef:1] [1:  http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security5.html] 



[bookmark: _Hlt170113684][bookmark: _Toc79579436][bookmark: _Toc167804762][bookmark: _Toc52252857]Using Industry Standard Form-based Authentication

Figure 1‑2 shows what happens if you specify form-based authentication, in which you can customize the login screen and error pages that a HyperText Transfer Protocol (HTTP) browser presents to the end user. 


[bookmark: _Toc51575220][bookmark: _Toc167811457]Figure 1‑3. Industry Standard for Form-Based Authentication overview




With form-based authentication, the following things occur: 
· A client requests access to a protected resource.
· If the client is unauthenticated, the server redirects the client to a login page.
· The client submits the login form to the server.
· If the login succeeds, the server redirects the client to the resource. If the login fails, the client is redirected to an error page. [footnoteRef:2] [2:  http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security5.html] 



[bookmark: _Toc79579437][bookmark: _Toc167804763]KAAJEE SSOWAP Use of Form-based Authentication

[bookmark: _Hlk520384022]Form-based authentication is not particularly secure. In form-based authentication, the content of the user dialog box is sent as plain text, and the target server is not authenticated. This form of authentication can expose your usernames and passwords unless all connections are over Secure Sockets Layer (SSL). If someone can intercept the transmission, the username and password information can easily be decoded. 

The J2EE servlet specification provides at least two means for Web-based applications to query for end-user authentication credentials:
· Hyper Text Transport Protocol (HTTP) Basic Authentication
· J2EE Form-based Authentication

KAAJEE employs J2EE Form-based Authentication for the J2EE Web-based authentication process as part of the larger security framework. VistALink provides connectivity between KAAJEE and the VistA M Server.

J2EE Form-based Authentication works as follows:
1. The user on the client uses a Web browser to access a Web-based application's protected resource (URL).
2. The J2EE Application Server (container) detects that the user is not in an authenticated user session and redirects the user to the J2EE Form-based Authentication Web login page specified in the <login-config> tag in the web.xml deployment descriptor.

	[image: Note]
	NOTE: The container remembers the URL the user originally requested.



3. The user on the client submits their username and password (i.e., Access and Verify codes) via the KAAJEE Authentication and Authorization (AA) Web login form.
a.	The Web login page's responsibility is to collect user credentials (username and password) and calls the WebLogic ServletAuthentication.authenticate API.
b.	The WebLogic ServletAuthentication.authenticate API passes those credentials to the WebLogic Custom Security Authentication Providers.
4. J2EE Application Server authenticates the user:
a. Success:
i.	If the WebLogic Custom Security Authentication Providers authenticates the user, an authenticated session is established.
b. Failure:
i.	If the WebLogic Custom Security Authentication Providers fails to authenticate the user, an authenticated session is not established.
5. Upon return to the ServletAuthentication.authenticate API, a flag is set identifying if the user has been authentication. KAAJEE checks this flag to determine where to redirect the user; either to the target application page, or to the login error page.

There cannot be login buttons that point directly to the login page. Only an attempt to access a protected resource (as opposed to the login page) triggers the J2EE Form-based Authentication process.

Authentication (i.e., challenging the end-user for Access and Verify codes by prompting them with the logon Web form) is triggered when an end-user attempts to access a protected Web page in the application:

The container will force the user to authenticate by submitting the login form only when required (for example, when an unauthenticated user tries to access a protected resource). This is termed lazy authentication and means that users who never attempt to access a protected resource will never be forced to authenticate. Once authenticated, a user will never be challenged again within a session. The user identity will be carried through to calls to other components of the application. Therefore, there is no need for user code behind protected resources to check that authentication has occurred.[footnoteRef:3] [3: 
] 



[bookmark: _Toc79579438][bookmark: _Toc167804764]Container Security Detecting Authorization Failures

Success or failure of the J2EE Application Server authorization for the user is defined as follows:
a. Success:
i.	If the container security detects that the user has the roll needed to access the requested page, the container permits access to that page.
b. Failure:
i.	Upon failure, the container either displays a general 403 error page or redirects the user to a specified error page identified in web.xml for 403 errors.

Generally, form-based authentication would handle both authentication and authorization. KAAJEE only implements the user interface part of form-based authentication. The back-end security check is replaced with the ServletAuthentication.authenticate API. Therefore, all authorization failures are handled solely by container security. As such all users who are not authorized to access the targeted page after login will receive an http '403' error. To provide a more user-friendly error message, KAAJEE now distributes a 'loginerror403.jsp' file. The consuming application may use this page or another of their choosing. To use this page, add an '<error-page>' entry in web.xml similar to the one listed below:

   <error-page>
     <error-code>403</error-code>
     <location>/login/loginerror403.jsp</location>
   </error-page>


[bookmark: _Toc204421514][bookmark: _Toc79579439][bookmark: _Toc167804765][bookmark: _Toc108604048][bookmark: _Toc117065168][bookmark: _Toc202863074][bookmark: _Ref116375387][bookmark: OLE_LINK15][bookmark: OLE_LINK16]KAAJEE SSOWAP J2EE Web-based Application Login Page

KAAJEE SSOWAP provides the official HealtheVet VistA J2EE Web-based application login page (i.e., login.jsp) to collect the end-user's choice of instition under which the user logs in. Kernel on the VistA M Server uses that information to authenticate the end-user and sign them onto VistA. A sample of the KAAJEE SSOWAP Web login page is displayed below:

[bookmark: _Toc108603785]
[bookmark: _Hlt200359910][bookmark: _Ref118520154][bookmark: _Toc117065247][bookmark: _Toc202862999][bookmark: _Toc204421596][bookmark: _Toc51575221][bookmark: _Toc167811458][bookmark: _Hlt200342715]Figure 1‑4. Sample KAAJEE SSOWAP Web login page (i.e., login.jsp)
[image: Sample KAAJEE SSOWAP Web login page (i.e., login.jsp)]


	[image: ]
	CAUTION: As per the Software Engineering Process Group/Software Quality Assurance (SEPG/SQA) Standard Operating Procedure (SOP) 192-039—Interface Control Registration and Approval (effective 01/29/01, see REDACTED), application programmers developing HealtheVet VistA J2EE Web-based applications that are KAAJEE-enabled must use the KAAJEE login Web page (i.e., login.jsp) as delivered (see Figure 1‑4). Developers must not customize the login Web page or alter the KAAJEE software code in any way.


[bookmark: _Hlt200350468]
	[image: ]
	CAUTION: In a domain consisting of an Administration Server and several Managed Servers, the Administration Server must always be running, as new logins through KAAJEE will not succeed while the Administration Server is down.




The KAAJEE SSOWAP Web login page:
· Complies with Section 508 of the Rehabilitation Act Amendments of 1998.
· Provides a consistent look-and-feel across all HealtheVet VistA J2EE Web-based applications that are KAAJEE-enabled.

[bookmark: OLE_LINK10][bookmark: OLE_LINK11]As you can see from Figure 1‑4, the introductory text (i.e., system announcement message) is displayed in the top portion of the Web login page and is preceded by the "System Announcements:" label.

Following the Introductory text, the name of the application to which you are signing on is displayed after the "Log on for:" label. Applications pass in the name of their application. In this example (Figure 1‑4), the application name is SSOi Web Application Plugin (SWAP) 2FA release.


Session Expiration Dialog Box Warning End-Users of Session Time Out

In compliance with Section 508, during login label are the specific KAAJEE displays a warning to the end-user entries used in alerting when there is only 30 seconds remaining in their session.

[bookmark: _Toc167811459]Figure 1‑5 Session Will Expire
[image: Session will expire pop-up]


In order to log into the Web-based application, which is described in the topic that follows (i.e., Login Procedures for J2EE Web-based Applications) KAAJEE provides this warning using JavaScript. Therefore, KAAJEE distributes a login.js file, which is exported as part of the login\javascript\ folder.

	[image: Note]
	REF: For more information on distribution of the login.js file, please refer to "Section 508 Compliance Addresses Session Timeouts" topic in section titled "5.	Import KAAJEE Login Folder" of this manual.




[bookmark: _Hlt204417264][bookmark: _Ref170614571]Login Procedures for J2EE Web-based Applications with KAAJEE SSOWAP

To log into VistA from a J2EE Web-based application, do the following:
1.	(Required) Navigate to the application URL, communicated to you by the release coordinator.
2.	Enter you PIV PIN at the prompt.
4.	(required) Select the appropriate Station Name/Number from the Institution dropdown list or accept the default value displayed.
5.	(required) Click on (press) the Proceed button or press the <Enter> key. After the authentication process successfully completes on the VistA M Server, the requested application protected Web page will be displayed.

	[image: Note]
	NOTE: The asterisks located next to the Sort by Station Number/Sort by Station Name radio buttons and the Institution dropdown box indicate that both the Station Name/Number sort order preference.





 
	[image: Note]
	REF: For information on common login-related error messages, please refer to the "Common Login-related Error Messages" topic in Chapter 10, "Troubleshooting," in this manual.

For a list of other login-related error messages, please refer to the "Symptoms and Possible Solutions" topic in Chapter 7 in the VistALink System Administration Guide.



	[image: Note]
	REF: For more information on the Kernel signon process and related error messages, please refer to the "Signon/Security" section in the Kernel Systems Management Guide.
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[bookmark: _Hlt171498564][bookmark: _Hlt178483135][bookmark: _Toc204421518][bookmark: _Ref193557314][bookmark: _Toc202863078][bookmark: _Toc167804766]Developer's Guide


This is the Developer's Guide section of this supplemental documentation for Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE). It is intended for use in conjunction with the KAAJEE software. It details the developer-related KAAJEE documentation (e.g., developer procedures needed to incorporate the KAAJEE authorization and authentication functionality into Web-based applications, APIs exported with KAAJEE, etc.).
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[bookmark: _Hlt171498568][bookmark: _Hlt178483139][bookmark: _Toc99334262][bookmark: _Toc202863079][bookmark: _Toc204421519][bookmark: _Toc167804767][bookmark: _Toc83538830][bookmark: _Toc84036965][bookmark: _Toc84044187]KAAJEE Installation Instructions for Developers

[bookmark: _Ref98223669][bookmark: _Toc99334243]
[bookmark: _Toc99795024][bookmark: _Ref99877659][bookmark: _Toc107653445][bookmark: _Ref111337430][bookmark: _Toc202863080][bookmark: _Toc167804768][bookmark: _Toc204421520]Dependencies: Preliminary Considerations for Developer Workstation Requirements

The following minimum hardware, software tools, and documentation are required by developers when developing J2EE Web-based applications that are Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)-enabled:


[bookmark: _Ref204792543][bookmark: _Toc204421601][bookmark: _Toc167811502]Table 2‑1. Developer minimum hardware and software tools/utilities required for KAAJEE-enabled application development
	Minimum Hardware/Software Requirement
	Description

	Workstation Hardware
	80x86-based client or server workstation.

	Operating System
	One of the following 32-bit operating systems:
· Linux (i.e., Red Hat Enterprise ES 8.0)
· Microsoft Windows XP Service Pack 3
· Microsoft Windows 11

	Development-related Software
	The following development-related software is required in order to develop J2EE Web-based applications that utilize KAAJEE functionality:
· [bookmark: _Ref204792458]KAAJEE Software (see Error! Not a valid bookmark self-reference.)—Software used to KAAJEE-enable Web-based applications.
· Java 2 Standard Edition (J2SE) Java Development Kit (JDK)—COTS software for development of J2EE Web-based applications that are KAAJEE-enabled. The JDK should include Java Runtime Environment (JRE) and other developer tools to write Java code.
· HealtheVet-VistA Web-based Software Applications (e.g., Blind Rehab, Patient Advocate Tracking System [PATS], Veterans Personal Finance System [VPFS])—Web-based software must be available to the end-user/developer.
· Internet Browser (e.g., Microsoft Internet Explorer 6.0 or higher)—Commercial-Off-The-Shelf (COTS) software. Internet browser software must be available to the end-user on the client workstation.
· Oracle SQL*Plus (9.2.0.1.0 or higher)—COTS software for configuring SSPI SQL or Standard Data Services (SDS) tables on an Oracle 10g database.
[image: Note] REF: For more information on configuring files and integrating KAAJEE with Web-based software applications, please refer to Chapter 4, "Integrating KAAJEE with an Application," in this manual.

	Network Communications Software/Capability
[bookmark: _Hlk520463612][image: Note] REF: For more information on telecommunications support, please visit the VHA Communication Services Office (CSO) Home Page:
http://vaww.va.gov/cso/
	All developer workstations must have the following network communications software and capability:
· Networked client/server workstations running Microsoft's native TCP/IP stack.
[image: Note] NOTE: Currently, only Winsock compliant TCP/IP protocol is supported on the LAN or remotely as Point-to-Point Protocol (PPP) or Serial Line Internet Protocol (SLIP). You must use RAS (Remote Access Service) or Dialup Networking to connect to the server using PPP or SLIP. For the setup of RAS or Dialup Networking, please refer to the appropriate operating system's documentation.
· Connectivity with the VistA M Server (i.e., VA Wide Area Network [WAN] connectivity). Run PING.EXE to test the connectivity.
· Capability to log onto the NT network using a unique NT Logon ID.




[bookmark: _Toc99793002][bookmark: _Toc202863081][bookmark: _Toc204421521][bookmark: _Toc167804769]Dependencies: KAAJEE and VistALink Software

The following table shows the dependency relationships between the current version of KAAJEE, SSPIs, and VistALink software:


[bookmark: _Toc99793280][bookmark: _Toc202863004][bookmark: _Toc167811503]Table 2‑2. Dependencies——KAAJEE, SSPIs, and VistALink software
	Developer-related Software
	Application Server Software

	Software
	Version
	KAAJEE SSOWAP Software
Release/Distribution
	KAAJEE SSPI Software
Release/Distribution
	VistALink Software Release/Distribution

	KAAJEE SSOWAP
	8.791
	XU_8.791.ZIP
	XU_8.781.zip
	VistALink 1.6.7




	[image: Note]
	REF: For a list of VistALink dependent VistA M Server patches, please refer to the VistALink Installation Guide.




[bookmark: _Toc202863082][bookmark: _Toc167804770]Dependencies: KAAJEE-Related Software Applications/Modules


[bookmark: _Toc202863005][bookmark: _Toc167811504]Table 2‑3. Dependencies—KAAJEE SSOWAP-related software applications/modules
	Module
	Description

	WebLogic 12.2 and higher  Application Server
(running)
	WebLogic 12.2 and higher servers use security provider packages that allow a J2EE application running in WebLogic 12.2 and higher to draw its Authentication and Authorization from Kernel on the VistA M Server.
[image: Note] NOTE: A J2EE standard for pluggable authentication for J2EE servers is underway[footnoteRef:4], but won't be finalized until J2EE 1.5. [4:  JSR-196, http://www.jcp.org/en/jsr/detail?id=196.] 


	VistALink 1.6.7
	The Application Server must also have the VistALink software deployed and running. VistALink provides connectivity between KAAJEE and the VistA M Server.

	Standard Data Services (SDS) 19.0 (or higher)
	KAAJEE makes internal API calls to the SDS Database/Tables located on an Oracle 11g database.

	Log4j2 libraries, log4j configuration file
	KAAJEE SSOWAP employs log4j2 API for logging management and output




[bookmark: _Toc99334263][bookmark: _Toc202863083][bookmark: _Toc204421522][bookmark: _Toc167804771]KAAJEE SSOWAP Installation Instructions

The following instructions are only required for those workstations to be used by developers to develop KAAJEE-enabled HealtheVet-VistA Web-based software applications running on a WebLogic Application Server.

	[image: Note]
	REF: For Developer Workstation platform requirements, please refer to the "Dependencies: Preliminary Considerations for Developer Workstation Requirements" topic in this chapter.




[bookmark: _Toc99334264][bookmark: _Toc167804772]1.	Confirm/Obtain Developer Workstation Distribution Files (recommended)

The following files are needed to install the KAAJEE developer-related software:
[bookmark: _Toc167811505]Table 2‑4. Dependencies—KAAJEE-related software documentation
	File Name
	Description

	KAAJEE_SSOWAP_8_791_RN.PDF
	Release Notes (manual). List of new features in the KAAJEE SSOWAP distribution

	KAAJEE_SSOWAP_8_791_DEPG.PDF
	Deployment Guide (manual). Outlines the details of KAAJEE-related software and gives guidelines on how the software is used within HealtheVet-Veterans Health Information Systems and Technology Architecture. It contains the User Manual, Programmer Manual, and Technical Manual information for KAAJEE.

	XU_8_791.ZIP
	KAAJEE Distribution File (jar files). This Zip file contains the KAAJEE software for development of HealtheVet-VistA Web-based applications requiring Authentication and Authorization against Kernel on the VistA M Server via KAAJEE.




	[image: Note]
	REF: For the KAAJEE software release, all distribution files, unless otherwise noted, are available for download from the Enterprise Product Support (EPS) anonymous directories:
· Preferred Method	download.vista.med.va.gov



[bookmark: _Toc99334265][bookmark: _Toc167804773]2.	Create a KAAJEE Staging Folder (required)

Create a KAAJEE Staging Folder on your developer workstation. This will be referred to as the <STAGING_FOLDER> alias for the rest of the instructions.


[bookmark: _Toc99334266][bookmark: _Toc167804774]3.	Unzip/Explode KAAJEE Software (required)

Unzip/Explode the XU_8_791.ZIP software distribution file in the <STAGING_FOLDER>.


	[image: Note]
	NOTE: KAAJEE makes internal API calls to the Standard Data Services (SDS) Database/Tables 19.0 (or higher) located on an Oracle 19c database. SDS is responsible for maintaining this database and related tables.
KAAJEE Classic distributes SDS 19.0 client jar files as part of the Sample Web Application. If you deploy the both the KAAJEE Sample Web Application and your own Web-based application on the same WebLogic Application Server domain instance and intend to use a different version of SDS, those client jar files will need to be swapped out for the appropriate version of the SDS client jar files. Otherwise, there may be a conflict if both applications reference the same JNDI tree.




[bookmark: _Toc99334267][bookmark: _Toc167804775]4.	Review/Use KAAJEE Files for Web-based Applications (recommended)

To build your HealtheVet-VistA J2EE Web-based applications that are KAAJEE-enabled, you need to configure and include the kaajee ssowap jar file located in the following directory:
<STAGING_FOLDER>\ssowap-8.0.791.jar

Each HealtheVet-VistA Web-based application requiring Authentication and Authorization against Kernel on the VistA M Server should use the standard KAAJEE Web login page, which is available with the login.jsp file located in the following KAAJEE archive:
<STAGING_FOLDER>\ssowap-8.0.791.war


	[image: Caution]
	CAUTION: Consuming applications should not provide a direct link to the login.jsp file. Otherwise, users could get a login error message when they click on that link.




	[image: Note]
	REF: For more information on this login error message, please refer to the "
Error: You navigated inappropriately to this page" topic in Chapter 10, "Troubleshooting," in this manual.




Review the sample descriptor files located in the following KAAJEE archive:
<STAGING_FOLDER>\ ssowap-8.0.791.war

Use these sample descriptor files as templates for your Web-based applications.


	[image: Note]
	REF: For more information on configuring files and integrating KAAJEE with Web-based software applications, please refer to Chapter 4, "Integrating KAAJEE SSOWAP with an Application," in this manual.



For example:


[bookmark: _Toc204421605][bookmark: _Toc167811460]Figure 2‑1. Sample application weblogic.xml file (e.g., KAAJEE Sample Web Application)
<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/10" xmlns:wls="http://www.bea.com/ns/weblogic/10" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd http://www.bea.com/ns/weblogic/10 http://www.bea.com/ns/weblogic/103/weblogic-web-app.xsd">

<run-as-role-assignment>
  <role-name>adminuserrole</role-name>
  <run-as-principal-name>SSOWAP_USER</run-as-principal-name>
</run-as-role-assignment>

<security-role-assignment>
  <role-name>SSOWAP_APP_ROLE</role-name>
  <principal-name>PRPF_LEAD_PFC</principal-name>
</security-role-assignment>

<session-descriptor>
  <cookie-name>ssowapJSESSIONID</cookie-name>
</session-descriptor>

<context-root>swap</context-root>
</weblogic-web-app>


In this sample application weblogic.xml file, the developers use KAAJEE Sample Web Application-related VistA M Server J2EE security keys and role names.

The <session-descriptor> tag contains the <session-param> tag, which defines attributes for Hyper Text Transport Protocol (HTTP) sessions, as shown in Table 2‑1.

The WebLogic Application Server defines the session cookie name. If it is not set by the user, it defaults to JSESSIONID. KAAJEE needs to set the session cookie name. You can set this to a more specific name for your application. For example:
· KAAJEE SSOWAP: ssowapJSESSIONID
· ApplicationOne: applicationoneJSESSIONID
· ApplicationTwo: applicationtwoJSESSIONID


For KAAJEE SSOWAP to execute correctly, it needs to have a <run-as> tag, which causes it to run as an Admin user, as shown below:

[bookmark: _Toc202863008][bookmark: _Toc204421606][bookmark: _Toc167811461][bookmark: _Hlt200359826]
Figure 2‑2. Sample excerpt from a web.xml file—Using the run-as tag
  <servlet>
    <servlet-name>LoginController</servlet-name>
    <servlet-class>gov.va.med.authentication.kernel.ssowap.LoginController</servlet-class>
    <init-param>
      <param-name>debugFlag</param-name>
      <param-value>True</param-value>
    </init-param>
    <run-as>
      <role-name>adminuserrole</role-name>
    </run-as>
  </servlet>

Make sure that the application context name is in the kaajeeConfig.xml file, as shown below:


[bookmark: _Toc99332741][bookmark: _Toc202863009][bookmark: _Toc204421607][bookmark: _Toc167811462]Figure 2‑3. Sample <context-root-name> tag found in the kaajeeConfig.xml file
<context-root-name>/ssowapSampleApp</context-root-name>
[bookmark: _Hlt200359812]

	[image: Caution]
	[bookmark: OLE_LINK20][bookmark: OLE_LINK21]Congratulations! You have now completed the installation of KAAJEE-related software on the developer workstation.


[bookmark: _Hlt171918488]
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[bookmark: _Hlt171498570][bookmark: _Hlt178483141][bookmark: _Ref100037129][bookmark: _Toc202863084][bookmark: _Toc204421523][bookmark: _Toc167804776]Integrating KAAJEE SSOWAP with an Application


This chapter describes how application developers can modify their HealtheVet-VistA Web-based applications to integrate Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE) 1.2.0.xxx for Authentication and Authorization to the VistA M Server.

This chapter discusses the following topics:
· Assumptions When Implementing KAAJEE
· Software Requirements
· Web-based Application Procedures to Implement KAAJEE


[bookmark: _Ref77644707][bookmark: _Toc83538832][bookmark: _Toc84036967][bookmark: _Toc84044189][bookmark: _Toc202863085][bookmark: _Toc204421524][bookmark: _Toc167804777]Assumptions When Implementing KAAJEE

The following assumptions are made regarding application developers and HealtheVet-VistA J2EE Web-based applications when implementing KAAJEE (Iteration 1):
· Developer Training—It is assumed that developers have J2EE experience, including the following skills:
· Writing Servlets
· Configuring J2EE Deployment Descriptors
· Deploying Java-based applications
· Configuring WebLogic 10.3.6 and higher -specific Deployment Descriptors
· Configuring/Using Oracle 11g database (e.g., Security Service Provider Interface [SSPI])
· Configuring/Using Log4J
· Implementing the security plug-in for WebLogic 10.3.6 and higher by using custom Security Service Provider Interfaces (SSPIs)

	[image: Note]
	REF: Information about implementing the security plug-in and SSPIs for WebLogic 10.3.6 and higher can be found at the following references:
· Kernel Authentication & Authorization for J2EE (KAAJEE) Installation Guide
· WebLogic Documentation at the following Website:
· http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/12c/12c_poster/poster.html#Applications using JMX to communicate to the WebLogic SSPIs at the following Website:

https://docs.oracle.com/middleware/1212/wls/index.html




[bookmark: _Toc52252855][bookmark: _Ref77644773][bookmark: _Toc83538833][bookmark: _Toc84036968][bookmark: _Toc84044190][bookmark: _Toc202863086][bookmark: _Toc204421525][bookmark: _Toc167804778]Software Requirements/Dependencies

In order to KAAJEE-enable a Web-based application, developers require the following software:


[bookmark: _Toc204421608][bookmark: _Toc167811506]Table 3‑1. Dependencies—KAAJEE software requirements for development
	Category
	Software
	Version/Notes

	Developer Workstation
	Java Integrated Development Environment (IDE)
Java 2 Standard Edition (J2SE) Java Development Kit (JDK)
	Any version. Developer software installed on the workstation used for developing HealtheVet-VistA J2EE Web-based applications.
The JDK should include a Java Runtime Environment (JRE) and other developer tools to write Java code.

	
	KAAJEE SSOWAP
	Version 8.791. Developer software installed on the workstation used for developing, running, and testing HealtheVet-VistA KAAJEE-enabled J2EE Web-based applications (see Error! Not a valid bookmark self-reference.).

	Application Server
	WebLogic
	Version 12.2 and higher

	
	KAAJEE SSPIs
	Version 8.781.

	
	VistALink
	Version 1.6. Developer's software is installed on WebLogic 12.2 and higher application servers used by the developer's application.

	Database
	Oracle Database
	Version 19c or higher (e.g., Security Service Provider Interface [SSPI])

	
	SDS Tables
	Version 19.0 or higher.
[image: Note] NOTE: KAAJEE works with SDS 18.0 or higher; however, KAAJEE 1.2.0.008 distributes SDS 18.0 client jar files as part of the Sample Web Application. If you deploy both the KAAJEE Sample Web Application and your own Web-based application on the same WebLogic Application Server domain instance and intend to use a different version of SDS, those client jar files will need to be swapped out for the appropriate version of the SDS client jar files. Otherwise, There may be a conflict if both applications reference the same JNDI tree.

	[bookmark: _Toc83538900][bookmark: _Toc202863010]VistA M Server
	Kernel
	Version 8.x, fully patched (see Error! Not a valid bookmark self-reference.).




	[image: Note]
	NOTE: Kernel is the designated custodial software application for KAAJEE; however, KAAJEE comprises multiple patches and software releases from several HealtheVet-VistA applications.



	[image: Note]
	[bookmark: _Ref110305563]REF: For the specific KAAJEE software and VistA M Server patches required for the implementation of KAAJEE, please refer to Error! Not a valid bookmark self-reference. in the "Error! Not a valid bookmark self-reference." Chapter 1 in this manual.




[bookmark: _Ref71016038][bookmark: _Toc71017421][bookmark: _Toc75938782][bookmark: _Ref77645355][bookmark: _Toc83538834][bookmark: _Toc84036969][bookmark: _Toc84044191][bookmark: _Toc202863087][bookmark: _Toc204421526][bookmark: _Toc167804779]Web-based Application Procedures to Implement KAAJEE


[bookmark: _Hlt193091030][bookmark: _Hlt193091041][bookmark: _Ref193080256][bookmark: _Ref193090998][bookmark: _Toc167804780]1.	Use of VistALink to Authenticate Users Based on Configured Station Numbers

KAAJEE makes use of VistALink to authenticate a user against a specific M system, based on configured station numbers. KAAJEE relies on VistALink during the following steps:
a.	Obtain the Java Naming and Directory Interface (JNDI) name of the VistALink connector pool (i.e., standard that provides a unified interface to multiple naming and directory services), based on the Station Number of the institution the user selects in the applications' Web login page. VistALink's institution mapping facility is used to return the JNDI name of the appropriate connector (and therefore destination M system) based on station number. The list of allowed authenticating Station Numbers is defined in the server-side deployment descriptor (i.e., kaajeeConfig.xml file).
b.	Make Remote Procedure Calls (RPC) calls over the selected VistALink connector to the corresponding M system, to check the user's credentials (i.e., Access and Verify codes). The VistALink connector whose JNDI name was obtained in Step #1a above is used.

KAAJEE depends on institution mapping being set up for your VistALink connectors. J2EE Web-based application developers must set up connectors at every site they intend to support KAAJEE logins.

	[image: Note]
	REF: For more information on VistALink, please consult the VistALink documentation.




[bookmark: _Ref69809815][bookmark: _Toc167804781]2.	Access VA Standard Data Services (SDS) Tables

VA Standard Data Services (SDS) has created and maintains standardized tables in an Oracle 10g database (e.g., VA Institutions). These tables must be accessible to your Web-based application. The minimum version required is 18.0. KAAJEE uses the read-only Institution API and the data in the SDS Institution table to do the following:
· Retrieve institution display names.
· Retrieve child institutions.
· Verify if divisions share the same VistA M Server provider instance.

	[image: Note]
	NOTE: KAAJEE works with SDS 18.0 or higher; however, KAAJEE 1.2.0.xxx distributes Standard Data Service (SDS) 18.0 client jar files as part of the Sample Web Application. If you deploy the both the KAAJEE Sample Web Application and your own Web-based application on the same WebLogic Application Server domain instance and intend to use a different version of SDS, those client jar files will need to be swapped out for the appropriate version of the SDS client jar files. Otherwise, there may be a conflict if both applications reference the same JNDI tree.



Therefore, the following are required:
· A Connection Pool and a Data Source needs to be created on the application server to point to the Oracle 11g database housing the SDS tables.

To configure the SDS tables for a J2EE DataSource, please refer to the "Configuring for a J2EE DataSource" topic in the SDS API Installation Guide.


	[image: Note]
	REF: For more information on the use of the SDS APIs, please refer to the SDS API Installation Guide. The SDS documentation is included in the SDS software distribution ZIP files, which are available for download at the following Website:
http://vaww.sts.infoshare.va.gov/STS_SDS/Project%20Artifacts/Forms/AllItems.aspx




[bookmark: _Toc167804782]3.	Import KAAJEE SSOWAP Jar File

The following jar file is present in the STAGING_FOLDER>\


[bookmark: _Ref78765853][bookmark: _Toc83538902][bookmark: _Toc202863012][bookmark: _Toc204421611][bookmark: _Toc167811507][bookmark: _Hlt200359758]Table 3‑2. KAAJEE jar distribution file
	Jar File Name
	Description

	ssowap-8.791.jar
	The KAAJEE SSOWAP java classes.




To import this library into your development environment, add this jar to the compiler paths of your Integrated Development Environment (IDE), ANT configuration, and/or anywhere else in your development environment that needs to know classpaths.


[bookmark: _Toc98223568][bookmark: _Toc99880018][bookmark: _Toc202863013][bookmark: _Toc167811508]Table 3‑3. Jar files and classpath defined for KAAJEE-enabled Web-based applications
	Classpath
	Description

	ssowap-8.791.jar 
	KAAJEE SSOWAP developer-related software.




The ssowap-8.791.jar file must be distributed in your application's Enterprise Archive (.ear) file with an application-level classloader.

When you are ready to deploy/distribute your application, perform the following steps:
a.	(required) Package the ssowap-8.791.jar (see Table 3‑2) in your application's ear file (e.g., in a "../APP-INF/lib" folder descendent from the root level of your application's ear file), along with its depencies (see below)
b.	(required) Ensure that ssowap-8.791.jar is not located in a deeper level of the classloader hierarchy than that of an application, anywhere on the application server. Otherwise, the singletons will be instantiated with settings inappropriate for your application, and the KAAJEE security system will function inappropriately for your application.


[bookmark: _Toc167804783]4.	Import Other Dependent Jar Files

KAAJEE-enabled Web-based applications also have dependencies on the following jar files:


[bookmark: _Ref83460728][bookmark: _Toc83538903][bookmark: _Toc202863014][bookmark: _Toc204421613][bookmark: _Toc167811509]Table 3‑4. Other required dependent jar files for KAAJEE-enabled Web-based applications

	log4j-api-2.17.1.jar
	A “PROVIDED” dependency, deployed as Shared Library 

	log4j-core-2.17.1.jar
	A “PROVIDED” dependency, deployed as Shared Library

	vha-stddata-client-19.0.jar
	(included) Two Standard Data Services (SDS) jar files (as of Version 19.0).

	vha-stddata-basic-19.0.jar
	




To import these libraries into your development environment, add all jars to the compiler paths of your IDE, ANT configuration, and/or anywhere else in your development environment that needs to know classpaths.

Once you install VistALink on a WebLogic Application Server, both VistALink and Log4J libraries are available on a classloader that is parent to all other applications; therefore, you do not need to export these jar files in your application.

You do, however, need to export the SDS jar files. Because they are used by the ssowap-8.791.jar, they need to be loaded via an application-level classloader in order for the consumed plugin to have visibility to them.

Thus, when you deploy/distribute your application it is recommended that you distribute both SDS jar files

[bookmark: _Ref83190631][bookmark: _Toc167804784]5.	Import KAAJEE Login Folder

The following files are present in the "login\" folder contained in the 
<STAGING_FOLDER>\ ssowap-8.0.791.war\


[bookmark: _Toc83538904][bookmark: _Toc202863015][bookmark: _Toc167811510]Table 3‑5. KAAJEE login folder files
	Directory
	File Name
	Description

	..login\
	login.jsp
	Login Web page for authentication. This is the Login Web page where users enter their Access and Verify codes and choose an Institution from a dropdown list.
[image: Caution] CAUTION: Consuming applications should not provide a direct link to the login.jsp file. Otherwise, users could get a login error message when they click on that link, see the description for navigatonerrordisplay.jsp in this table.

	..login\
	loginCookieInfo.htm
	Login persistent cookie information.

	..login\
	loginerror.jsp
	J2EE Form-based Authentication error Web page for failure to authenticate J2EE Application Server login credentials.

	..login\
	Loginerror403.jsp
	KAAJEE authorization error Web page.

	..login\
	loginerrordisplay.jsp
	Login error display Web page for failure to authenticate VistA M Server login credentials.
[image: Note] REF: For more information on these types of errors, please refer to Chapter 10, "Troubleshooting," in this manual.

	..login\
	navigatonerrordisplay.jsp
	Error display Web page displayed after a user successfully logs into a Web application and then presses the browser Back button to get back to the KAAJEE Web login page.
[image: Note] REF: For more information on this error, please refer to the "
Error: You navigated inappropriately to this page" topic in Chapter 10, "Troubleshooting," in this manual.

	..login\
	SessionTimeout.jsp
	Login session timeout Web page.

	..login\images\
	HealtheVetVistaSmallBlue.jpg
	HealtheVet-VistA small blue logo image file.

	..login\images\
	HealtheVetVistaSmallWhite.jpg
	HealtheVet-VistA small white logo image file.

	..login\javascript\
	login.js
	This JavaScript file supports functions associated with code for the KAAJEE login.jsp file. For example:
· Sorting of Institutions.
· Enabling/Disabling of components as part of login parameter passing. 
· Helper function for the Section 508 Alert dialog timeout box.




Import the entire "login\" folder, including the folder itself, into your Web-based application. These files must be brought into your J2EE Web-based application, and distributed with it, because by the J2EE standard, any pages that are used in J2EE Form-based Authentication must run in the same context as the Web-based application:


	[image: Note]
	REF: For more information on how to configure your web.xml file for the login folder, please refer to "5.	Configure Web-based Application for J2EE Form-based Authentication" topic in Chapter 4, "Role Design/Setup/Administration," in this manual.




[bookmark: _Ref202860260]Section 508 Compliance Addresses Session Timeouts

To address Section 508 compliance regarding session timeouts, KAAJEE displays an alert dialogue box warning the end-user logging in how much time remains before the session expires. This warning is displayed 30 seconds prior to the expiration of the login user's session. To provide this warning, KAAJEE utilizes JavaScript. Therefore, KAAJEE distributes a login.js file, which is exported as part of the login\javascript\ folder.


[bookmark: _Ref77658160][bookmark: _Ref89056970][bookmark: _Toc167804785]6.	Set Up KAAJEE Configuration File

KAAJEE relies on a configuration file (i.e., kaajeeConfig.xml file) to read in all administrator-configurable settings.

You can use the kaajeeConfig.xml file that is distributed with the KAAJEE software or you can create a KAAJEE configuration file in your J2EE Web-based application and export it along with your Web-based application.

	[image: Note]
	REF: For a sample kaajeeConfig.xml file, please refer to Figure 5‑2 in Chapter 6, "KAAJEE SSOWAP Configuration File," in this manual.



If you create a new KAAJEE configuration file, do the following:
a.	(required) Create an empty XML file within your Web-based application's context root (e.g., in the WEB-INF folder). The developer can choose any name for this XML file.
b.	(required) Set the top-level tag for the file to <kaajee-config>. For example:


[bookmark: _Toc83538907][bookmark: _Toc202863016][bookmark: _Toc167811463]Figure 3‑1. Sample empty KAAJEE configuration file
<?xml version="1.0" encoding="UTF-8"?>
<kaajee-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="kaajeeConfig.xsd">

</kaajee-config>


c.	(required) Configure the file created in the previous step (i.e., Step #6b) by following guidelines in Chapter 6, "KAAJEE SSOWAP Configuration File," in this manual. At a minimum, the following tags must be configured (see Table 5‑1):
· <kaajee-config>.
· <login-station-numbers> (controls the login Web page's Institution dropdown list).
· <context-root-name>.

	[image: Note]
	NOTE: For every login Station Number you enter here, you also need to use VistALink's Institution Mapping to associate that login Station Number with a VistALink connector.



	[image: Caution]
	WARNING: The context root must have a minimum of four characters following the forward slash (e.g., /kaajeeSampleApp).




	[image: Note]
	REF: For more details, please refer to Chapter 6, "KAAJEE SSOWAP Configuration File," in this manual.




[bookmark: _Ref100119469][bookmark: _Toc167804786]7.	Configure KAAJEE Initialization Servlet (web.xml file)

You can place the KAAJEE configuration file anywhere within your Web-based application's context root. KAAJEE provides an initialization servlet to initialize KAAJEE.

The classname of the servlet is:
gov.va.med.authentication.kernel.InitKaajeeServlet

This servlet in the web.xml file is used to:
· Pass the location and name of the KAAJEE configuration file (see Figure 3‑2) as a servlet parameter named:
kaajee-config-file-location
· Control the sequence of startup using the <load-on-startup> tag.


For example:


[bookmark: _Toc83538908][bookmark: _Ref117497547][bookmark: _Toc202863017][bookmark: _Toc167811464]Figure 3‑2. Sample excerpt of the KAAJEE web.xml file—Initialization servlet
  <servlet>
   <servlet-name>KaajeeInit</servlet-name>
   <servlet-class>gov.va.med.authentication.kernel.ssowap.InitKaajeeServlet</servlet-class>
   <init-param>
     <param-name>kaajee-config-file-location</param-name>
     <param-value>/WEB-INF/kaajeeConfig.xml</param-value>
   </init-param>
   <load-on-startup>3</load-on-startup>
  </servlet>


	[image: Note]
	REF: For a sample web.xml file, please refer to "Appendix A—Sample Deployment Descriptors" in this manual.




[bookmark: _Toc167804787]8.	Configure KAAJEE LoginController Servlet (web.xml file)

The kaajee-1.2.0.xxx.jar file includes one servlet that you must configure in your J2EE Web-based application's web.xml file. This servlet is referenced by the Web forms in the \login folder.

The servlet must be mapped to the url-pattern "/LoginController".

Configure the servlet in your application's web.xml file, as shown below:


[bookmark: _Toc83538909][bookmark: _Toc202863018][bookmark: _Toc167811465]Figure 3‑3. Sample excerpt of the KAAJEE web.xml file—LoginController servlet configuration
  <servlet>
    <servlet-name>LoginController</servlet-name>
    <servlet-class>gov.va.med.authentication.kernel.ssowap.LoginController</servlet-class>
  <run-as>
   <role-name>adminuserrole</role-name>
</run-as>
  </servlet>
  
  <servlet-mapping>
    <servlet-name>LoginController</servlet-name>
    <url-pattern>/LoginController</url-pattern>
  </servlet-mapping>


[bookmark: _Toc167804788][bookmark: OLE_LINK22][bookmark: OLE_LINK23][bookmark: OLE_LINK24]9.	Configure KAAJEE Listeners (web.xml file)

KAAJEE has two similar listeners, both of which perform logout actions for a user. Both of these listeners are available in case one listener does not work with a specific container/platform (e.g., WebLogic, Oracle 10g, etc.):


[bookmark: _Ref134001208][bookmark: _Toc202863019][bookmark: _Toc167811511]Table 3‑6. KAAJEE listeners
	Listener
	Description

	KaajeeSessionAttributeListener
	The KaajeeSessionAttributeListener listens for specific (individual) session attributes that are targeted for removal, which signals a user session ending, and performs user logout actions.

	KaajeeHttpSessionListener
	The KaajeeHttpSessionListener listens for session destruction. It is looking for the whole session being destroyed and performs user logout actions.


[bookmark: _Hlt170710291]

KAAJEE uses two different approaches to configure the listeners for future compatibility. While an HttpSessionAttributeListener method would be expected to be the way to retrieve the value of an attribute (in the case of the LoginUserInfoVO object) as a user session is destroyed[footnoteRef:5], the HttpSessionListener's sessionDestroyed method is used to provide this functionality. [5:  Hall, Marty, More Servlets and Java Server Pages, 2002, pg. 523.] 


Configure these listeners in your application's web.xml file as follows (listeners in bold typeface):


[bookmark: _Toc167811466]Figure 3‑4 Sample excerpt of the KAAJEE web.xml file—Listener configuration
  <listener>
    <listener-class>
      gov.va.med.authentication.kernel.ssowap.KaajeeSessionAttributeListener
    </listener-class>
  </listener>
  
  <listener>
    <listener-class>
      gov.va.med.authentication.kernel.ssowap.KaajeeHttpSessionListener
    </listener-class>
  </listener>


[bookmark: _Toc167804789]10.	Design/Set Up Application Roles

Some preparation is required to correctly set up application roles. The following areas are involved:
· WebLogic group mappings (weblogic.xml).

	[image: Note]
	REF: For a sample spreadsheet showing a mapping between WebLogic group names (i.e., principals) with J2EE security role names, please refer to "Appendix B—Mapping WebLogic Group Names with J2EE Security Role Names" in this manual.



· VistA M Server J2EE security keys (correspond to WebLogic server group names).
· J2EE security role declarations (web.xml and weblogic.xml).
· Security constraints using J2EE security role and group names (weblogic.xml).

	[image: Note]
	REF: For more detailed role configuration instructions, please refer to Chapter 5, "Role Design/Setup/Administration," in this manual.




[bookmark: _Toc167804790]11.	Configure Log4J Logging for KAAJEE

KAAJEE uses Log4J to log error and debugging information. It is strongly recommended that you configure your application to use Log4J (in addition to any other logging system your application is using) in order to gain access to the error and debugging information produced by KAAJEE.

Configure Log4J logging so that KAAJEE error and/or debug messages are logged to the same file used by all J2EE-based applications running in the same domain on the application server. This assists users on the application server to monitor and troubleshoot KAAJEE and all other J2EE-based applications in one place.

	[image: Note]
	REF: For specific directions on setting up logging for KAAJEE, please refer to the "Log4J2 Configuration" section in Chapter 8, "Implementation and Maintenance," in the Implementation and Maintenance section of this documentation.




[bookmark: _Toc167804791]12.	Protect KAAJEE SSOWAP Web Pages

At this point, your application is configured with KAAJEE, but has not yet been configured to protect any Web pages using KAAJEE. To authenticate and authorize users with KAAJEE, you need to protect the Web pages in your application by configuring J2EE Form-based Authentication in your application's web.xml file.

Once you protect your application Web pages, KAAJEE is activated. When a user tries to access a protected Web page, if all is configured correctly, the user is redirected to the KAAJEE Web login page for Authentication and Authorization.

	[image: Note]
	REF: For information on setting up KAAJEE to protect Web pages, please refer to Chapter 4, "Role Design/Setup/Administration," in this manual.






Kernel Authentication & Authorization for J2EE (KAAJEE) 1.2.0 is Single Sign-On/User Context (SSO/UC) enabled via the implementation of the CCOW user context. CCOW or Clinical Context Object Workgroup is an HL7 standard protocol designed to enable disparate applications to synchronize in real-time, and at the user-interface level. It is vendor independent and allows applications to present information at the desktop and/or portal level in a unified way. Applications that incorporate this functionality offer their users the convenience of only having to present their credentials (Access/Verify codes) once via their first signon to the SSO/UC/CCOW enabled application. Subsequent applications selected by the user, which are also SSO/UC/CCOW enabled, will not prompt the user for their credentials.

	[image: Note]
	REF: For more information on CCOW and Single Signon/User Context (SSO/UC), refer to the Single Sign-On/User Context (SSO/UC) Deployment Guide (Kernel Patch XU*8.0*337), located on the VHA Software Document Library at the following address:
      http://www.va.gov/vdl/application.asp?appid=162 




Enabling Your KAAJEE SSOWAP Application

To enable your KAAJEE application, in addition to the elements required by KAAJEE, you must do the following:
1. Modify your application’s web.xml to include the necessary elements described in the following section.
2. Ensure your application contains a folder called ‘applets’ that contains the WebJ2Applets.jar library.
3. Ensure that your application contains the WebJContextor.jar library.
4. Ensure that clients of your application have the required Sentillion desktop components as described in the Single Sign-On/User Context (SSO/UC) Deployment Guide.


KAAJEE Sample Application with SSO/UC

For example, the sample application that comes with your distribution can be SSO/UC enabled by replacing the following web.xml file:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\samples\exploded\kaajeeSampleApp-1.2.0.xxxEAR\kaajeeSampleApp.war\WEB-INF\web.xml

With the following web.xml file:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\samples\sso-ccow\web.xml

You will then need to (re)deploy the sample application.


SSO/UC Elements in web.xml

Table 3‑7 lists the elements that need to be added to your web.xml file. You can find the actual elements in the file named sso-elements.txt where you can cut and paste them in your application’s web.xml file. This file can be found in your distribution, in the following directory:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\samples\sso-ccow\sso-elements.txt


[bookmark: _Ref206317550][bookmark: _Toc167811512]Table 3‑7. web.xml elements needed for SSO/UC/CCOW enabled KAAJEE Sample Application
	Category
	Element

	Filters
	ContextInitializerFilter and its corresponding filter-mapping
ContextWriterFilter and its corresponding filter-mapping

	Listener
	CcowHttpSessionListener

	Servlet
	ContextParticipantServlet and its corresponding servlet-mapping




Figure 3‑5 provides the contents of file sso-elements.tx which contains the elements listed in Table 3‑7. 

	[image: Caution]
	ATTENTION: The order of placement of these elements is critical when building of your web.xml file. You can see the ordering of these elements in the web.xml file found in the following directory:
<STAGING_FOLDER>\kaajee-1.2.0.xxx\samples\sso-ccow\web.xml



Figure 3‑5 shows the web.xml element implementations needed for SSO/UC/CCOW enabled KAAJEE SampleWebApp:


[bookmark: _Ref206318736][bookmark: _Toc167811467]Figure 3‑5. web.xml element implementations needed for SSO/UC/CCOW enabled KAAJEE SampleWebApp
<!--  Filters  -->
  <filter>
    <filter-name>ContextInitializerFilter</filter-name>
    <filter-class>
      gov.va.med.authentication.kernel.ccow.ContextInitializerFilter
    </filter-class>
    <init-param>
      <param-name>context-participant</param-name>
      <param-value>ccowcp</param-value>
      <!--should match ContextParticipantServlet 
          servlet-mapping url-pattern '/ccowcp' 
      -->
    </init-param>
    <init-param>
      <param-name>applet-codebase</param-name>
      <param-value>applets/</param-value>
      <!-- directory that contains library WebJ2Applets.jar-->
    </init-param>
    <init-param>
      <param-name>ccow-kaajee-appl-name</param-name>
      <param-value>VistaLinkLoginModule</param-value>
      <!-- name of application registered with the ccow vault -->
    </init-param>
    <init-param>
      <param-name>session-id</param-name>
      <param-value>kaajeeJSESSIONID</param-value>
      <!-- must match value set in weblogic.xml, session-descriptor, CookieName --> 
    </init-param>
    <init-param>
      <param-name>app-archive-J2</param-name>
      <param-value>WebJ2Applets.jar</param-value>
    </init-param>
    <init-param>
      <param-name>app-archive-IE</param-name>
      <param-value>WebIEApplets.cab</param-value>
    </init-param>
    <init-param>
      <param-name>UseIETag</param-name>
      <param-value>false</param-value>
    </init-param>
    <init-param>
      <param-name>app-locate-timeout</param-name>
      <param-value>60</param-value>
    </init-param>
    <init-param>
      <param-name>locator-applet-body</param-name>
      <param-value></param-value>
      <!-- Text you want visible while locator applet is sent to browser -->
    </init-param>
    <init-param>
      <param-name>app-debug</param-name>
      <param-value></param-value>
      <!-- to enable the Sun Java Console to capture and display 
           the locator applet activity.  value is 'debug' 
      -->
    </init-param>
  </filter>

  <filter>
    <filter-name>ContextWriterFilter</filter-name>
    <filter-class>
      gov.va.med.authentication.kernel.ccow.ContextWriterFilter
    </filter-class>
  </filter>
  
  <filter-mapping>
   <filter-name>ContextInitializerFilter</filter-name>
   <url-pattern>login/login.jsp</url-pattern>
  </filter-mapping>

  <filter-mapping>
   <filter-name>ContextWriterFilter</filter-name>
   <servlet-name>LoginController</servlet-name>
  </filter-mapping>


<!--  Listeners  -->

  <listener>
    <listener-class>
      gov.va.med.authentication.kernel.ccow.CcowHttpSessionListener
    </listener-class>
  </listener>
  

<!--  Servlets  -->
  <servlet>
    <servlet-name>ContextParticipantServlet</servlet-name>
    <servlet-class>
      gov.va.med.authentication.kernel.ccow.ContextParticipantServlet
    </servlet-class>
  </servlet>
  
  <servlet-mapping>
   <servlet-name>ContextParticipantServlet</servlet-name>
   <url-pattern>/ccowcp</url-pattern>
   <!--should match config value of context-participant in ContextInitializerFilter -->
  </servlet-mapping>  
[bookmark: _Hlt171918503][bookmark: _Hlt171498572]

Special Instructions for the Users of Your SSO/UC Application

The first time a user uses your application with SSO/UC, the user will be displayed with a security warning, indicating the loading of one of the special applets. Instruct your user to accept and run the application and to ensure check the option to “always trust content from this publisher”; so that the warning doesn’t appear every time the user uses your application. See Figure 3‑6 below:  


[bookmark: _Ref206577999][bookmark: _Toc167811468]Figure 3‑6. Security warning displayed when the Sentillion’s Locator applet is being loaded
[image: Security warning displayed when the Sentillion’s Locator applet is being loaded]
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Protected resources in the various development environments are as follows:
· M—Menus act as protected resources and VistA M Server J2EE security keys act as groups
· Web-based applications (Kernel Authentication and Authorization Java (2) Enterprise Edition [KAAJEE])—Static Web pages, servlets, jsps, etc.

Roles can be assigned to the protected resources. The web.xml file lists all of those roles in addition to listing the Web protected resources and their associated roles. The web.xml file is used declaratively to filter access to protected resources based on authorized roles. Further detailed authorization can be done programmatically with the isUserInRole (role_name) method.

The weblogic.xml file maps roles to principals (i.e., user and/or groups); however, KAAJEE only uses groups. Principals are physical in that they pertain to physical users. The role acts as a lock on a protected resource and the key is the principal. Only certain principals can open a lock (i.e., only those principals that are mapped to the role/lock). Since KAAJEE only uses groups and groups equate to VistA M Server J2EE security keys, then a user in M can have several security keys and some, if any, may open the role/locks in the J2EE world.

Some setup is required to correctly set up application roles. The following steps are involved:
1.	Declare Groups (weblogic.xml file)
2.	Create VistA M Server J2EE Security Keys Corresponding to WebLogic Group Names
3.	Declare J2EE Security Role Names
4.	Map J2EE Security Role Names to WebLogic Group Names (weblogic.xml file)
5.	Configure Web-based Application for J2EE Form-based Authentication
6.	Protect Resources in Your J2EE Application
[bookmark: _Ref100119510]Error! Not a valid bookmark self-reference.
7.	Administer Users
8.	Administer Roles

	[image: Note]
	REF: For a sample spreadsheet showing a mapping between WebLogic group names (i.e., principals) with J2EE security role names, please refer to "Appendix B—Mapping WebLogic Group Names with J2EE Security Role Names" in this manual.



	[image: Note]
	REF: For samples of the web.xml and weblogic.xml files, please refer to "Appendix A—Sample Deployment Descriptors" in this manual.




[bookmark: _Ref77665284][bookmark: _Toc83538836][bookmark: _Toc84036971][bookmark: _Toc84044193][bookmark: _Toc202863089][bookmark: _Toc204421528][bookmark: _Toc167804793]1.	Declare Groups (weblogic.xml file)

KAAJEE roles are based on the group names in your application's weblogic.xml file.

For example:


[bookmark: _Ref204792960][bookmark: _Toc204421620][bookmark: _Toc167811469]Figure 4‑1. Sample application weblogic.xml file with group information (e.g., KAAJEE Sample Web Application)
<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wls="http://www.bea.com/ns/weblogic/90" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd http://www.bea.com/ns/weblogic/90 http://www.bea.com/ns/weblogic/920/weblogic-web-app.xsd">

<run-as-role-assignment>
<role-name>adminuserrole</role-name>
<run-as-principal-name>SSOWAP_USER</run-as-principal-name>
</run-as-role-assignment>

<security-role-assignment>
<role-name>XUKAAJEE_SAMPLE_ROLE</role-name>
<principal-name>XUKAAJEE_SAMPLE</principal-name>
</security-role-assignment>

  <session-descriptor>
    <cookie-name>ssowapJSESSIONID</cookie-name>
  </session-descriptor>

</weblogic-web-app>


The <principal-name> tag is the group name and also the VistA M Server J2EE Security Key name (see 2.	Create VistA M Server J2EE Security Keys Corresponding to WebLogic Group Names). In this example, the group name is “XUKAAJEE_SAMPLE" and the role name is "XUKAAJEE_SAMPLE_ROLE."

Developers must place the weblogic.xml file in the application's <WEBROOT>\WEB-INF folder, if not already present.

	[image: Note]
	NOTE: The <WEBROOT> represents the root directory of the application war file, if exploded.




Developers should distribute the weblogic.xml file in the WEB-INF folder in the application's war file; this war file is in the ear file.


[bookmark: _Ref77665548][bookmark: _Toc83538838][bookmark: _Toc84036973][bookmark: _Toc84044195][bookmark: _Toc202863090][bookmark: _Toc204421529][bookmark: _Toc167804794]2.	Create VistA M Server J2EE Security Keys Corresponding to WebLogic Group Names

At user login, KAAJEE uses the XUS ALLKEYS RPC (added with Kernel Patch XU*8.0*337) to get all VistA M Server J2EE security keys associated with the user.

KAAJEE returns all VistA M Server J2EE security keys. KAAJEE then caches the results in the Oracle database and uses those security keys along with the security roles in the application's weblogic.xml file as the basis for subsequent authorization decisions.

Therefore, for every WebLogic group name in the weblogic.xml file, if a user is to be authorized to the J2EE security role that maps to the WebLogic group name (see #3.	Declare J2EE Security Role Names below), the user must be granted a VistA M Server J2EE Security Key whose name corresponds precisely to the WebLogic group name found in the weblogic.xml file. Application developers must also make sure that they set the SEND TO J2EE field (#.05) in the SECURITY KEY file (#19.1) to YES for those corresponding VistA M Server J2EE security keys.

	[image: Note]
	NOTE: To set the SEND TO J2EE field (#.05), use VA FileMan's Enter or Edit File Entries option [DIEDIT].



Regardless of whether a particular user is assigned a particular security key, the entire set of application-specific VistA M Server J2EE security keys corresponding to the entire set of weblogic.xml group names should be exported by your application to all VistA M Servers that would be used for authentication for your application.


[bookmark: _Ref77667427][bookmark: _Ref77667517][bookmark: _Toc83538839][bookmark: _Toc84036974][bookmark: _Toc84044196][bookmark: _Toc202863091][bookmark: _Toc204421530][bookmark: _Toc167804795]3.	Declare J2EE Security Role Names

In the simplest implementation, J2EE role names used by your application have exactly the same name as the corresponding WebLogic group names found in your application's weblogic.xml file (see Figure 4‑1). In such cases, no mapping is required to link J2EE security role names to WebLogic group names.


[bookmark: _Ref77667548][bookmark: _Toc83538840][bookmark: _Toc84036975][bookmark: _Toc84044197][bookmark: _Toc202863092][bookmark: _Toc204421531][bookmark: _Toc167804796]4.	Map J2EE Security Role Names to WebLogic Group Names (weblogic.xml file)

The security role is mapped to the group, where the group is a collection of users. This mapping is done in the weblogic.xml file (Figure 4‑1); however, as long as the <role-name> tags of a security role match one-to-one with names in the <principal-name> tag in the weblogic.xml file, no mapping is needed.

	[image: Note]
	REF: For a sample spreadsheet showing a mapping between WebLogic group names (i.e., principals) with J2EE security role names, please refer to "Appendix B—Mapping WebLogic Group Names with J2EE Security Role Names" in this manual.




[bookmark: _Ref77667558][bookmark: _Toc83538841][bookmark: _Toc84036976][bookmark: _Toc84044198][bookmark: _Toc202863093][bookmark: _Toc204421532][bookmark: _Toc167804797]5.	Configure Web-based Application for J2EE Form-based Authentication

J2EE Form-based Authentication cannot be directly invoked. Instead, it is triggered by a user's attempted access to a protected page. Thus, if you need the user's identity, then all Web pages that need that identity should be protected by a security constraint in order to trigger the J2EE Form-based Authentication login process.

To configure J2EE Form-based Authentication for the applications protected resource, use the <auth-method> begin and end tags with a value of "FORM." Also, configure the location of the form-login-page and form-error-page, as shown below:


[bookmark: _Toc83538915][bookmark: _Toc202863022][bookmark: _Toc167811470]Figure 4‑2. Sample excerpt of the KAAJEE web.xml file—J2EE Form-based Authentication configuration setup
  <login-config>
  <auth-method>FORM</auth-method>
   <form-login-config>
     <form-login-page>/login/login.jsp</form-login-page>
     <form-error-page>/login/loginerror.jsp</form-error-page>
   </form-login-config>
  </login-config>

	[image: Note]
	NOTE: Because of the way J2EE Form-based Authentication works, there cannot be login buttons that point directly to the Web login page. Only an attempt to access a protected resource—as opposed to the Web login page, which cannot be protected since it must be accessed prior to successful authentication—triggers the J2EE Form-based Authentication process.




[bookmark: _Ref77667569][bookmark: _Toc83538842][bookmark: _Toc84036977][bookmark: _Toc84044199][bookmark: _Toc202863094][bookmark: _Toc204421533][bookmark: _Toc167804798]6.	Protect Resources in Your J2EE Application

Resource methods (e.g., Web URLs) can now be protected using both declarative security (i.e., the standard J2EE deployment descriptor settings) and programmatic security.

For example, for Web pages, add the following to protect a particular URL:


[bookmark: _Toc83538916][bookmark: _Toc202863023][bookmark: _Toc167811471]Figure 4‑3. Sample web.xml file excerpt—Protecting an application URL
   <security-constraint>
    <web-resource-collection>
      <web-resource-name>SSOWAP Login Page</web-resource-name>
      <url-pattern>/login/*</url-pattern>
      <http-method>GET</http-method>
      <http-method>POST</http-method>
      </web-resource-collection>
      <user-data-constraint>
        <!-- For the KAAJEE Login Page, use 'CONFIDENTIAL' when possible. -->
        <transport-guarantee>NONE</transport-guarantee>
      </user-data-constraint>
  </security-constraint>

   <security-constraint>
    <web-resource-collection>
      <web-resource-name>A Protected Page</web-resource-name>
      <url-pattern>/AppHelloWorld.jsp</url-pattern>
      <http-method>GET</http-method>
      <http-method>POST</http-method>
      </web-resource-collection>
      <auth-constraint>
        <role-name>XUKAAJEE_SAMPLE_ROLE</role-name>
      </auth-constraint>
      <user-data-constraint>
        <!--  Use a value of 'CONFIDENTIAL' to place this page in SSL. -->
        <transport-guarantee>NONE</transport-guarantee>
      </user-data-constraint>
  </security-constraint>

Once a user tries to access a protected Web page resource, for example, the login process is triggered.




[bookmark: _Ref77667621][bookmark: _Toc83538844][bookmark: _Toc84036979][bookmark: _Toc84044201][bookmark: _Toc202863096][bookmark: _Toc204421535][bookmark: _Toc167804799]7.	Administer Users

Users simply need to be active, enabled users on a VistA M Server (one that is also configured to be one of the systems against which logins can be performed).

The existing Kernel user management tools are used to manage the divisions that are permissible for users to log into at any given site.

All users on each VistA M Server who are going to log in through KAAJEE must have the XUS KAAJEE WEB LOGON "B"-type option. Kernel exports and links this option with the XUCOMMAND menu. Since all authenticated users have access to XUCOMMAND, this linkage enables all users to have access to all RPCs listed under the XUS KAAJEE WEB LOGON "B"-type option.
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J2EE roles are administered as VistA M Server J2EE security keys on the VistA M Server on which a given user has an account. To assign a J2EE role to the user, simply create (if needed) a VistA M Server J2EE Security Key with the same name as the J2EE principal (WebLogic group) that you wish to grant, and then grant the VistA M Server J2EE Security Key to the end-user.

VistA M Server security keys are non-hierarchical; hence, the roles implemented via VistA M Server J2EE security keys are also non-hierarchical. This matches J2EE security roles themselves, which are also flat.

	[image: Note]
	NOTE: VistA M Server security keys are not multi-divisional; therefore, KAAJEE roles based on VistA M Server J2EE security keys are also not multi-divisional. Because of the use of the VistA M Server J2EE Security Key mechanism, for whatever divisions a user has rights to log into at one division, the end-user will have the same roles at any other division of an integrated site that the end-user is given permission by the IRM system manager to log into.
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The kaajeeConfig.xml file controls a number of settings necessary for Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE) to operate. It is located in the following directory:
<STAGING_FOLDER>\kaajee-1.2.0.xxx\dd_examples

The tag sequence within the kaajeeConfig.xml file is not significant; however, this file must parse as a valid XML file.
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The kaajeeConfig.xml file has the following tags and default values:


[bookmark: _Ref100039910][bookmark: _Toc202863024][bookmark: _Toc167811513]Table 5‑1. KAAJEE configuration file (i.e., kaajeeConfig.xml) tag settings
	[bookmark: _Toc83538917]Tag Name
	Description

	<kaajee-config>
	Root XML tag. For example:
  <kaajee-config
     xmlns:xsi=
      "http://www.w3.org/2001/XMLSchema-instance"
     xsi:noNamespaceSchemaLocation=
      "kaajeeConfig.xsd">
  </kaajee-config>

	<host-application-name>
	The login Web page uses this value to prominently display your application name, so that users know why they are seeing the login Web page. For example:
<host-application-name>KAAJEE Sample
</host-application-name>

	<sts-service-address>
	Address of the STS service, used to obtain the SAML token 

	[bookmark: _Hlt170807236]<context-root-name>
	This tag is used to generate the stored username in the kaajeeManageableAuthenticator's user store, not as the actual context root name for the application. The <context-root-name> must be "/" followed by at least four characters. For example:
<context-root-name>/kaajeeSampleApp</context-root-name>
The KAAJEE code explicitly takes the 2nd through 5th characters to use as the username prefix.

	<system-announcement>
	This tag is an administrator-configurable logon banner. It is the introductory text displayed to users when they sign onto the system.
KAAJEE was developed for centralized (national) applications/systems, where the main database (not M-based) and the application server are co-located; therefore, there is a one-to-many relationship between the application server and VistA M Servers. Because the presentation of the introductory text comes before the user signs into any VistA M Server and selects the Institution/Division, this text cannot be derived from a specific VistA M Server but must come from the application server. Thus, this tag is an administrator-configurable logon banner. It holds the introductory text displayed to users when they sign onto the system via one of these centralized KAAJEE-enabled applications.
Sites must enter announcement text in this tag. Use a tilde (~) character to provide line breaks, or "~ ~" (each tilde separated by a space) to provide a paragraph break.
For example:
<system-announcement>
  My System Announcement~
  Line 2~ ~
  Paragraph 2
</system-announcement>
[image: Note] REF: For another example of introductory text, please refer to the "Suggested System Announcement Text" topic in this chapter.

	<user-new-person-divisions>
	Some applications want to support division switching only to those divisions that an IRM system manager has configured as valid divisions in a person's NEW PERSON file (#200) entry on their host VistA M Server.
Defaults to "false" (case sensitive).
To tell KAAJEE to return this list of divisions after login in the LoginUserInfoVO object, set the retrieve attribute of this tag to "true" (case sensitive):
<user-new-person-divisions retrieve="true" />

	<computing-facility-divisions>
	Some applications want to support division switching for all divisions supported at the same computing facility as the login division, regardless of whether explicit access has been granted to the user for any particular division.
Defaults to "false" (case sensitive).
To tell KAAJEE to return this list of divisions in the LoginUserInfoVO object, set the retrieve attribute tag of this tag to "true" (case sensitive):
<computing-facility-divisions retrieve="true" />

	<cactus-insecure-mode>
	Enables an application with valid Access/Verify code login credentials to retrieve a non-expiring "temporary" j_username/j_password credential to use for unit testing (e.g., testing with the CACTUS unit testing framework).
Defaults to "false" (case sensitive).
For example:
<cactus-insecure-mode enabled="false" />
[image: Caution] As the tag name indicates, setting this mode decreases system security. This mode should never be enabled on a production system. It defaults to "false" unless enabled is specifically set to "true" (case sensitive).
[image: Note] REF: For more information on CACTUS testing, please refer to Chapter 10, "Cactus Testing with KAAJEE," in this manual.
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The following is suggested text for a mandatory banner warning from the Office of Cyber and Information Security (OCIS) as of February 20, 2002:[footnoteRef:6] [6:  See https://vaww.ocis.va.gov/portal/server.pt?.] 



[bookmark: _Toc83538918][bookmark: _Toc202863025][bookmark: _Toc167811472]Figure 5‑1. Mandatory OCIS banner warning message
U.S. Government Computer System

U. S. government systems are intended to be used by authorized government network users for viewing and retrieving information only, except as otherwise explicitly authorized for official business and limited personal use in accordance with policy. Information from these systems resides on and transmits through computer systems and networks funded by the government. All access or use constitutes understanding and acceptance that there is no reasonable expectation of privacy in the use of Government networks or systems.

The data and documents on this system include Federal records that contain sensitive information protected by various Federal statutes, including the Privacy Act, 5 U.S.C. Section 552a, and veterans' records confidentiality statutes such as 38 U.S.C. Sections 5701 and 7332. Access to the data and records is on a need-to-know basis only.

All access or use of this system constitutes user understanding and acceptance of these terms and constitutes unconditional consent to review and action including (but not limited to) monitoring, recording, copying, auditing, inspecting, investigating, restricting access, blocking, tracking, disclosing to authorized personnel, or any other authorized actions by all authorized government and law enforcement personnel.

[bookmark: _Hlt200359540]Unauthorized user attempts or acts to (1) access, upload, change, or delete information on this system, (2) modify this system, (3) deny access to this system, (4) accrue resources for unauthorized use or (5) otherwise misuse this system are strictly prohibited. Such attempts or acts are subject to action that may result in criminal, civil, or administrative penalties.
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[bookmark: _Ref76979669][bookmark: _Toc83538919]
[bookmark: _Ref99937190][bookmark: _Toc202863026][bookmark: _Toc167811473]Figure 5‑2. Sample KAAJEE configuration file (i.e., kaajeeConfig.xml)
[bookmark: _Hlt200359491]<?xml version="1.0" encoding="UTF-8"?>
<kaajee-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="kaajeeConfig.xsd">
	<!-- host application name, used for login page display and logging -->
  	<host-application-name>SSOi Web Application Plugin (SWAP) 2FA release</host-application-name>
	<context-root-name>/swap</context-root-name>
  	<!-- put the system announcement here. Use ~ for a line break, or ~ ~ for a
       paragraph break. -->
  	<system-announcement>
    U.S. Government Computer System
    ~ ~
    U. S. government systems are intended to be used by authorized government network users for viewing and retrieving information only, except as otherwise explicitly authorized for official business and limited personal use in accordance with policy.  Information from these systems resides on and transmits through computer systems and networks funded by the government.  All access or use constitutes understanding and acceptance that there is no reasonable expectation of privacy in the use of Government networks or systems.
	~ ~
    The data and documents on this system include Federal records that contain sensitive information protected by various Federal statutes, including the Privacy Act, 5 U.S.C. § 552a, and veterans' records confidentiality statutes such as 38 U.S.C. §§ 5701 and 7332.  Access to the data and records is on a need-to-know basis only.
    ~ ~
    All access or use of this system constitutes user understanding and acceptance of these terms and constitutes unconditional consent to review and action including (but not limited to) monitoring, recording, copying, auditing, inspecting, investigating, restricting access, blocking, tracking, disclosing to authorized personnel, or any other authorized actions by all authorized government and law enforcement personnel.
	~ ~
    Unauthorized user attempts or acts to (1) access, upload, change, or delete information on this system, (2) modify this system, (3) deny access to this system, (4) accrue resources for unauthorized use or (5) otherwise misuse this system are strictly prohibited.  Such attempts or acts are subject to action that may result in criminal, civil, or administrative penalties.
  	</system-announcement>
  	
    <sts-service-address>https://sqa.services.eauth.va.gov:9301/STS/RequestSecurityToken</sts-service-address>
  	<!-- set to true to return a user's "New Person" division multiple as part
       of login -->
  	<user-new-person-divisions retrieve="true" />

  	<!-- set to true to return all children divisions of the login division's
       computing facility, as part of login -->
  	<computing-facility-divisions retrieve="true" />

  	<cactus-insecure-mode enabled="false" />
</kaajee-config>



KAAJEE SSOWAP Configuration File
		KAAJEE SSOWAP Configuration File

[bookmark: _Hlt170627802][bookmark: _Hlt171498576][bookmark: _Hlt171918517][bookmark: _Hlt178483147][bookmark: _Ref76979984][bookmark: _Ref77640781][bookmark: _Toc83538850][bookmark: _Toc84036985][bookmark: _Toc84044207][bookmark: _Toc202863102][bookmark: _Toc204421541][bookmark: _Toc167804805]Programming Guidelines


[bookmark: _Toc83538851][bookmark: _Toc84036986][bookmark: _Toc84044208][bookmark: _Toc202863103][bookmark: _Toc204421542][bookmark: _Toc167804806]Application Involvement in User/Role Management

Under ordinary circumstances, an application that is Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)-enabled should not record, store, or otherwise manage which user divisions are legal for a user to log into, or which roles a user has been granted. Kernel acts as the external source of Authentication and Authorization, as well as the point of user provisioning.

With KAAJEE, the IRM system manager handles all these tasks on the VistA M Server. This is one of the benefits of the KAAJEE approach; the user and role administration is all handled at the same VistA M Server location as it always has been.


[bookmark: _Toc83538852][bookmark: _Toc84036987][bookmark: _Toc84044209][bookmark: _Toc202863104][bookmark: _Toc204421543][bookmark: _Toc167804807]J2EE Container-enforced Security Interfaces

As with any security framework solution (e.g., SSPIs), all J2EE container-enforced security is supported. You can access the username of the end-user programmatically, and you can use both programmatic and declarative role checking to protect resources.

The web.xml and weblogic.xml files are used for declarative role checking. Using the isUserInRole and/or isCallerInRole methods are considered programmatic authorization/role checking. Using custom SSPIs with J2EE Form-based Authentication (e.g., KAAJEE) can be considered programmatic Authentication and Authorization. Using Basic Authentication with just deployment descriptors is purely declarative Authentication and Authorization. Whenever code is added to the equation of deciding Authentication and Authorization, then it becomes programmatic.


[bookmark: _Ref76979926][bookmark: _Toc83538853][bookmark: _Toc84036988][bookmark: _Toc84044210][bookmark: _Toc202863105][bookmark: _Toc204421544][bookmark: _Toc167804808]J2EE Username Format

The J2EE username for a given user is returned in the following format:
xxxx_DUZ_nnnn~CMPSYS_nnn

Where:
· xxxx—The first four characters following the "/" of the value as entered in the 
<context-root-name> tag in the kaajeeConfig.xml file.
· DUZ_nnnn—The user's DUZ as stored in the NEW PERSON file (#200).
· CMPSYS_nnn—The Station Number of the login division's computing system provider as returned by Standard Data Services' Institution getVistaProvider() API.

	[image: Note]
	REF: For more information on the use of the SDS APIs, please refer to the SDS API Installation Guide. The SDS documentation is included in the SDS software distribution ZIP files, which are available for download at the following Website:
http://vaww.sts.infoshare.va.gov/STS_SDS/Project%20Artifacts/Forms/AllItems.aspx




For example:
kaaj_DUZ_8888~CMPSYS_523

Where:
· swap—The first four characters following the "/"  of the value as entered in the 
<context-root-name> tag in the kaajeeConfig.xml file.
· 8888—The user's DUZ as stored in the NEW PERSON file (#200).
· 523—The Station Number of the login division's computing system provider, as returned by Standard Data Services' Institution getVistaProvider() API.

On the VistA M Server, this should correspond to the Station Number of the default Institution, as defined in the login host computer system's KERNEL SYSTEM PARAMETERS file (#8989.3).

This means that for all the divisions supported on a given VistA M Server, a user will have the same J2EE username returned to them. For logins against a different computer system, the same user will likely have a different DUZ, as well as a different parent facility, returned.

	[image: Note]
	NOTE: In the future, the Department of Veterans Affairs Personal Identification (VPID) may alter the username, assuming an enterprise-wide user identifier is created in VHA or VA. The VPID will be stored in the NEW PERSON file (#200), in addition to being stored in national directories.




[bookmark: _Hlt170627890][bookmark: _Ref77640756][bookmark: _Toc83538854][bookmark: _Toc84036989][bookmark: _Toc84044211][bookmark: _Toc202863106][bookmark: _Toc204421545][bookmark: _Toc167804809]LoginUserInfoVO Object

After login, KAAJEE returns additional demographic information in a LoginUserInfoVO object (i.e., value object). KAAJEE stores the LoginUserInfoVO object (i.e., value object) in the Hyper Text Transport Protocol (HTTP) Session Object. The object is stored in the session object using the key value stored in the LoginUserInfoVO.SESSION_KEY string.

LoginUserInfoVO is implemented as a JavaBean, therefore it can be accessed as a JavaBean, within Java Server Pages (JSP) Web pages.

	[image: Note]
	NOTE: A JavaBean is a reusable component that can be used in any Java application development environment. JavaBeans are dropped into an application container, such as a form, and can perform functions ranging from a simple animation to complex calculations.[footnoteRef:7] [7:  Definition of JavaBean from the following Glossary WebWeb site: http://www.orafaq.com/glossary/faqglosj.htm, 7/17/04, Revision 2.1;  Author: Frank Naudé.] 





For example:


[bookmark: _Toc83538920][bookmark: _Toc202863027][bookmark: _Toc204421626][bookmark: _Toc167811474]Figure 6‑1. JavaBean Example: LoginUserInfoVO object
public class LoginUserInfoVO
extends java.lang.Object 
implements java.io.Serializable
[bookmark: _Hlt200359475]

KAAJEE returns this JavaBean to the enclosing application after login. It is returned to the enclosing application as an object in HttpSession. It contains user demographics information about the logged-in user. A public static field provides the key for the application to find the object in HttpSession.


[bookmark: _Toc83538921][bookmark: _Toc202863028][bookmark: _Toc167811514]Table 6‑1. Field Summary: LoginUserInfoVO object
	Field Summary

	static java.lang.String
	SESSION_KEY
The key under which this value is placed in the session object during login, and from which this object can be retrieved by the enclosing Web-based application post-login.




[bookmark: _Toc83538922][bookmark: _Toc202863029][bookmark: _Toc167811515]Table 6‑2. Constructor Summary: LoginUserInfoVO object
	Constructor Summary

	LoginUserInfoVO()
generic constructor.




[bookmark: _Ref78186410][bookmark: _Ref78186383][bookmark: _Toc83538923][bookmark: _Toc202863030][bookmark: _Toc167811516]Table 6‑3. Method Summary: LoginUserInfoVO object
	Method Summary

	Return Type
	Method Name and Description

	java.util.TreeMap
	getLoginDivisionVistaProviderDivisions()
Returns a list of divisions (based on information in the SDS Institution table) whose Vista Provider is the same as the Vista Provider computer system of the login division. This list is returned as a TreeMap. The key value in the TreeMap is the Station Number, which is a String. The object value stored under each key is a VistaDivisionVO object.
[image: Note] REF: See also the "VistaDivisionVO Object" topic in this manual.
This method is provided to applications to support division switching for all divisions supported at the same computing facility as the login division, regardless of whether explicit access has been granted to the user for any particular division. Applications can display a list of other divisions that the user could switch to within the application, allowing the user to select a different division. It is then the application's responsibility to use the proper division for its own internal business rules. The application developer should be aware that this method may not be appropriate when using VistALink RPC calls as the login user may not be permitted access to a specific division.

	java.lang.String
	getLoginStationNumber()
Returns the Station Number of the Division the user selected at login. This can be used as a key to retrieve additional information (e.g., name about the login division from the TreeMap of permitted divisions returned by the getPermittedDivisions method).

	java.util.TreeMap
	getPermittedNewPersonFileDivisions()
Returns a list of the user's permitted divisions returned as a TreeMap. The key value in the TreeMap is the Station Number, which is a String. The object value stored under each key is a VistaDivisionVO object.
[image: Note] REF: See also the "VistaDivisionVO Object" topic in this manual.
This list represents all of the divisions on the VistA M Server that the user could have logged into. Applications can display a list of other divisions that the user could switch to within the application, allowing the user to select a different division. It is then the application's responsibility to use the proper division for its own internal business rules, and also to pass the proper Division Station Number with each VistALink RPC call it makes to M.

	java.lang.String
	getUserDegree()
Returns the user's Degree value from the NAME COMPONENTS file (#20).

	java.lang.String
	getUserDuz()
Return the user's DUZ from the NEW PERSON file (#200).

	java.lang.String
	getUserFirstName()
Returns the users' First Name value from the NAME COMPONENTS file (#20).

	java.lang.String
	getUserLastName()
Returns the user's Last Name value from the NAME COMPONENTS file (#20).

	java.lang.String
	getUserMiddleName()
Returns the user's Middle Name value from the NAME COMPONENTS file (#20).

	java.lang.String
	getUserName01()
Returns the user's name as it's stored in the NAME field (# .01) in the NEW PERSON file (#200). For example:
KRNUSER,ONE E

	java.lang.String
	getUserNameDisplay()
Returns the Display Name of the user, as put together by the Name Standardization APIs on M. For example:
One E. Krnuser

	java.lang.String
	getUserParentAdministrativeFacilityStationNumber()
[bookmark: OLE_LINK12][bookmark: OLE_LINK13]Returns the parent facility of the Division used for login, as resolved on the login computer system based on that system's INSTITUTION file (#4) from the SDS 13.0 (or higher) tables.

	java.lang.String
	getUserParentComputerSystemStationNumber()
Returns the computer system's default Institution/Computer System Institution, as identified in the system's KERNEL SYSTEM PARAMETERS file (#8989.3).

	java.lang.String
	getUserPrefix()
Returns the user's Prefix value from the NAME COMPONENTS file (#20).

	java.lang.String
	getUserSuffix()
Returns the user's Suffix value from the NAME COMPONENTS file (#20).

	java.lang.String
	toString()
Returns a string representation of the values in the object.




[bookmark: _Hlt170633692]An example of using this JavaBean in a Java Server Page (JSP) Web page is shown below:


[bookmark: _Toc167811475]Figure 6‑2.  Sample JSP Web page code (e.g., AppHelloWorld.jsp)
[bookmark: _Hlt200359427][bookmark: _Toc83538924][bookmark: _Toc202863031]<%@ page language="java" %>
<%@ page import ="gov.va.med.authentication.kernel.LoginUserInfoVO, 
 gov.va.med.authentication.kernel.VistaDivisionVO,
 java.util.Set,
 java.util.Iterator,
 java.util.TreeMap,
 javax.naming.NamingException, 
 javax.resource.ResourceException" %>

<html>
<head><title>Hello, World</title></head>
<body>
  <% String groupname = "XUKAAJEE_SAMPLE"; 
  %>

<h2>Hi there. This web page is a protected application resource.</h2>
<h2>[YOUR APP PAGE GOES HERE]</h2>  
  
<p><i>To get here you needed to both <i>authenticate</i> and <i>authorize</i>.<br>
  So let's see who you are.</i></p>
  
<p><b>Authenticated username -- request.getRemoteUser(): </b><font color="red"><%= request.getRemoteUser() %> 
  </font></p>
  
              
<b>Authorization -- request.principal name ?: </b><font color="red"> 
  <%= request.getUserPrincipal() %></font><br>
                               
  
  <% LoginUserInfoVO userLoginInfo = 
     (LoginUserInfoVO) session.getAttribute(LoginUserInfoVO.SESSION_KEY);
     pageContext.setAttribute("userInfo", userLoginInfo); 
  %> 
  <jsp:useBean id="userInfo" scope="page"
   type="gov.va.med.authentication.kernel.LoginUserInfoVO" />
  <table border="0" cellspacing="3" cellpadding="3">
    
  <tr align="left"> 
    <td colspan="2"> 
      <p><strong>User Info (from Session): </strong></p></td>
    </tr>
    <tr> 
      <td align="right"><b>VPID:</b></td>
      <td><jsp:getProperty name="userInfo" property="UserVpid" /></td>
    </tr>
    <tr> 
      <td align="right"><b>DUZ:</b></td>
      <td><jsp:getProperty name="userInfo" property="UserDuz" /></td>
    </tr>
    <tr> 
      <td align="right"><b>User name (.01 New Person): </b></td>
      <td><jsp:getProperty name="userInfo" property="UserName01" /></td>
    </tr>
    <tr> 
      <td align="right"><b>User name (display):</b></td>
      <td><jsp:getProperty name="userInfo" 
           property="UserNameDisplay" /></td>
    </tr>
    <tr> 
      <td align="right"><b>Last Name:</b></td>
      <td><jsp:getProperty name="userInfo" 
           property="UserLastName" /></td>
    </tr>
    <tr> 
      <td align="right"><b>First Name:</b></td>
      <td><jsp:getProperty name="userInfo" 
           property="UserFirstName" /></td>
    </tr>
    <tr> 
      <td align="right"><b>Middle name:</b></td>
      <td><jsp:getProperty name="userInfo" 
           property="UserMiddleName" /></td>
    </tr>
    <tr> 
      <td align="right"><b>Prefix:</b></td>
      <td><jsp:getProperty name="userInfo" property="UserPrefix" /></td>
    </tr>
    <tr> 
      <td align="right"><b>Suffix:</b></td>
      <td><jsp:getProperty name="userInfo" property="UserSuffix" /></td>
    </tr>
    <tr> 
      <td align="right"><b>Degree:</b></td>
      <td><jsp:getProperty name="userInfo" property="UserDegree" /></td>
    </tr>
    <tr> 
      <td align="right"><b>Login Station Number:</b></td>
      <td><jsp:getProperty name="userInfo" 
           property="LoginStationNumber" /></td>
    </tr>
    <tr> 
      <td align="right"><b>Parent Administrative 
        Facility Station Number:</b></td>
      <td><jsp:getProperty name="userInfo" 
        property="UserParentAdministrativeFacilityStationNumber" /></td>
    </tr>
    <tr> 
      <td align="right"><b>Parent Computer System Station Number:</b></td>
      <td><jsp:getProperty name="userInfo" 
        property="UserParentComputerSystemStationNumber" /></td>
    </tr>
    <tr>
      <td align="right" valign="top"><b>Permissible Divisions 
        (New Person file):</b></td>
      <td>
        <%
        StringBuffer sb = new StringBuffer();
        {
          TreeMap permittedDivisions = 
             userLoginInfo.getPermittedNewPersonFileDivisions();
          if (permittedDivisions != null) {
            Set keySet = permittedDivisions.keySet();
            Iterator it = keySet.iterator();
            while (it.hasNext()) {
              String divNumber = (String) it.next();  
              VistaDivisionVO vDiv = 
                (VistaDivisionVO) permittedDivisions.get(divNumber);
              sb.append(vDiv.toString());
              sb.append("<br>");
            }
          }
        }
        %>
        <%= sb.toString() %>
      </td>
    </tr>
    <tr>
      <td align="right" valign="top">
      <b>Divisions that are children of 
      <br>the Login Division's Computing Facility
      <br>institution, sharing the same computing
      <br>facility:</b></td>
      <td>
        <%
        sb = new StringBuffer();
        {
          TreeMap cfDivisions = 
            userLoginInfo.getLoginDivisionVistaProviderDivisions();
          if (cfDivisions != null) {
            Set keySet = cfDivisions.keySet();
            Iterator it = keySet.iterator();
            while (it.hasNext()) {
              String divNumber = (String) it.next();  
              VistaDivisionVO vDiv = 
                (VistaDivisionVO) cfDivisions.get(divNumber);
              sb.append(vDiv.toString());
              sb.append("<br>");
            }
          }
        }
        %>
        <%= sb.toString() %>
      </td>
    </tr>
  </table>
  <p><a href="logout.jsp"><b>LOGOUT</b></a></p>
</body>
</html>


[bookmark: _Toc83538855][bookmark: _Toc84036990][bookmark: _Toc84044212][bookmark: _Ref150655990][bookmark: _Ref150657690][bookmark: _Toc202863107][bookmark: _Toc204421546][bookmark: _Toc167804810]VistaDivisionVO Object

The VistaDivisionVO object JavaBean is used to store an individual division, when division TreeMaps (i.e., tree structure, keyed on Division Station Number strings) are returned by the LoginUserInfoVO methods.

	[image: Note]
	REF: For more information on the LoginUserInfoVO methods, please refer to Table 6‑3 in this chapter.




For example:


[bookmark: _Toc83538925][bookmark: _Toc202863032][bookmark: _Toc167811476]Figure 6‑3. JavaBean Example: VistaDivisionVO object
[bookmark: _Hlt200359408]public class VistaDivisionVO
extends java.lang.Object 
implements java.io.Serializable

Represents a VistA Division, including Station Name and Station Number.


[bookmark: _Toc83538926][bookmark: _Toc202863033][bookmark: _Toc167811517]Table 6‑4. Constructor Summary: VistaDivisionVO object
	Constructor Summary

	VistaDivisionVO()
Instantiates a VistaDivision with all fields set to a null string.




[bookmark: _Toc83538927][bookmark: _Toc202863034][bookmark: _Toc167811518]Table 6‑5. Method Summary: VistaDivisionVO object
	Method Summary

	Return Type
	Method Name and Description

	boolean
	getIsDefault()
Returns whether or not this is set to the default Login Division.

	java.lang.String
	getName()
Returns the Station Name of the Division, presumably from the VistA M Server INSTITUTION file (#4) entry (depending on the source of the information the instance contains)

	java.lang.String
	getNumber()
Returns the Station Number of the Division, presumably from the VistA M Server INSTITUTION file (#4) entry (depending on the source of the information the instance contains)

	java.lang.String
	toString()
Returns a string representation of the Division information




[bookmark: _Toc83538856][bookmark: _Toc84036991][bookmark: _Toc84044213][bookmark: _Toc202863108][bookmark: _Toc204421547][bookmark: _Toc167804811]VistALink Connection Specs for Subsequent VistALink Calls

For subsequent VistALink calls (i.e., after the user has already been authenticated), application developers can use one of the VistALink connection specs for general application use. The information returned by the KAAJEE login helps streamline this process.

For example, if your J2EE application needs to make a VistALink connection to the same division under which the user logged in (a frequent circumstance for some applications), application developers can use the VistaLinkDuzConnectionSpec. This connection spec identifies the user to the VistA M Server based on the user's DUZ (i.e., Kernel user internal entry number [IEN]) in the NEW PERSON file (#200).

Thus, for subsequent VistALink calls, an application can do any of the following:
· Retrieve the division against which the user logged in from the LoginUserInfoVO object.
· Retrieve the JNDI name for the corresponding VistALink connector pool using the Login Division.
The JNDI can be retrieved by using VistALink's InstitutionMappingDelegate.getJndiConnectorNameForInstitution method. The following are examples of the usage of this method:
String jndiConnectionName =  InstitutionMappingDelegate.getJndiConnectorNameForInstitution(institution);

String jndiName = InstitutionMappingDelegate.getJndiConnectorNameForInstitution(division);
· Retrieve the user's DUZ from the LoginUserInfoVO object.
· Make the connection to the VistA M Server using the VistaLinkDuzConnectionSpec. This particular connection specification class does not require any additional user mapping on the VistA M Server/Kernel side. As long as there is a "trust" relationship between your J2EE Application Server and the VistA M Server in question, then there should be no reason not to use the VistaLinkDuzConnectionSpec.

	[image: Note]
	REF: For more information on the LoginUserInfoVO object, please refer to the "LoginUserInfoVO Object" topic in this chapter.



	[image: Note]
	NOTE: The VistaLinkDuzConnectionSpec has been deprecated; however, its use will most likely continue until the conversion to VPIDs is completed.



	[image: Note]
	REF: For more information on the VistALink connection specs, please refer to the VistALink Developer Guide.




[bookmark: _Toc83538857][bookmark: _Toc84036992][bookmark: _Toc84044214][bookmark: _Toc202863109][bookmark: _Toc204421548][bookmark: _Toc167804812]Providing the Ability for the User to Switch Divisions

Applications that support multi-divisional functionality need to manage the set of divisions between which a user can switch. KAAJEE supports this need by providing valid lists of divisions to which the user can switch.

KAAJEE SSOWAP provides two different division lists, because different applications have different business rules as to which divisions should be supported:
· Divisions from a User's New Person File
· All Divisions at the Login Division's Computing Facility


[bookmark: _Ref78187391]Divisions from a User's New Person File

Some applications want to support division switching only to those divisions that an IRM system manager has configured as valid divisions in a user's NEW PERSON file (#200)  entry on their host VistA M Server. To obtain this list of divisions from KAAJEE:
1.	Configure the KAAJEE software to retrieve this information. In the kaajeeConfig.xml file, set the following tag to "true" (case sensitive):
<user-new-person-divisions retrieve="true" />
2.	Access the list in the LoginUserInfoVO object, using the getPermittedNewPersonFileDivisions() method.

The list of divisions from the user's DIVISION Multiple field (#16) in the NEW PERSON file (#200) on the VistA M Server is filtered. The DIVISION must be within the same computing facility as the KAAJEE Login Division, as determined by the Standard Data Services (SDS) Institution utilities (i.e., Institution.getVistaProvider method).


[bookmark: _Ref78187403]All Divisions at the Login Division's Computing Facility

Some applications want to support division switching for all divisions supported at the same computing facility as the login division, regardless of whether explicit access has been granted to the user for any particular division. To obtain this list of divisions from KAAJEE do the following:
1.	Configure the KAAJEE software to retrieve this information. In the kaajeeConfig.xml file, set the following tag to "true" (case sensitive):
<computing-facility-divisions retrieve="true" />
2.	Access the list in the LoginUserInfoVO object using the getLoginDivisionVistaProviderDivisions() method.


The list of divisions is filtered. Divisions must be within the same computing facility as the KAAJEE Login Division, as determined by the SDS Institution utilities (i.e., Institution.getVistaProvider method).


[bookmark: _Hlt170615232][bookmark: _Toc202863110][bookmark: _Toc204421549][bookmark: _Toc167804813]logout.jsp File

The KAAJEE listeners (see Table 3‑6) listen for session logouts. Logouts can either be user-initiated or due to a session timeout. If a logout is detected (i.e., session.invalidate), the KAAJEE listeners call the XUS KAAJEE LOGOUT RPC (see Table 7‑1.) to log the user off of the system and update the SIGN-ON LOG file (#3.081) to show the user is now logged off of the system.

	[image: Note]
	REF: For more information on the SIGN-ON LOG file (#3.081), please refer to the Kernel Systems Management Guide.



KAAJEE 1.2.0.xxx distributes a sample logout.jsp file, which is located in the following directory:
<STAGING_FOLDER>/kaajee-1.2.0.xxx/jars/jsp/logout.jsp

The sample logout.jsp file is shown below:


[bookmark: _Toc204421634][bookmark: _Toc167811477]Figure 6‑4. Sample logout.jsp file
[bookmark: _Hlt200359379]<%@ page language="java" %>
<HTML>
  <HEAD>
    <!--
     * 
   * @author Security Service
     * @version 1.2.0.007
     * -->
    <TITLE>Logout Page</TITLE>
  </HEAD>
  <BODY>
    <%
      session.invalidate();
    %>
    <H3>You are now logged out.</H3>
  </BODY>
</HTML>
[bookmark: _Ref134002136][bookmark: _Toc202863035]

This sample logout.jsp file is an optional and is only provided as a template on how to provide a logout link and corresponding logout.jsp. However, consuming applications must provide a means for the user logged in to log out.
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		Programming Guidelines
[bookmark: _Hlt200359368]
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This is the Systems Management Guide section of this supplemental documentation for Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE). It is intended for use in conjunction with the KAAJEE software. It details the technical-related KAAJEE documentation (e.g., implementation and maintenance of KAAJEE, routines, files, options, interfaces, product security, etc.).
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Information throughout this chapter is meant to help IRM in the implementation and maintenance of Kernel Authentication and Authorization Java (2) Enterprise Edition Single Sign-On Web Application Plugin (KAAJEE SSOWAP).


	[image: Note]
	For the J2EE and VistA-M server installations, see the chapters listed below found in the KAAJEE software, see the KAAJEE Security Service Provider Interface (SSPI) for WebLogic 12.2 and higher Installation Guide:
· "J2EE Application Server Installation Instructions"
· "VistA M Server Installation Instructions"
NOTE: For the VistA M Server installation, also see the description for Kernel Patch XU*8*504 located in the Patch Module on FORUM.
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KAAJEE consists of VistA M Server patches that have been assigned to the following namespaces (listed alphabetically):
· XU—Kernel
· XWB—RPC Broker

	[image: Note]
	NOTE: Kernel is the designated custodial software application for KAAJEE; however, KAAJEE comprises multiple patches and software releases from several HealtheVet-VistA applications.



	[image: Note]
	REF: For the specific KAAJEE software and VistA M Server patches required for the implementation of KAAJEE, please refer to Error! Not a valid bookmark self-reference. in the "Error! Not a valid bookmark self-reference." topic in this manual.




[bookmark: _Toc133913204][bookmark: _Toc188414459][bookmark: _Toc167804817]Site Configuration

The VistA M Server KERNEL SYSTEM PARAMETERS file (#8989.3) holds the site parameters for the installation of Kernel. This allows users to configure and fine tune Kernel for:
· Site-specific requirements and optimization needs.
· HealtheVet-VistA software application requirements.

Some parameters are defined by IRM during the Kernel software installation process (e.g., agency information, volume set multiple, default parameters). Other parameters can be edited subsequent to installation (e.g., spooling, response time, and audit parameters). Priorities can also be set for interactive users and for TaskMan. Defaults for fields (e.g., timed read, auto menu, and ask device) are defined for use when not otherwise specified for a user or device. The values in the KERNEL SYSTEM PARAMETERS file (#8989.3) can be edited with the Enter/Edit Kernel Site Parameters option [XUSITEPARM].


[bookmark: _Toc133913205][bookmark: _Toc188414460]Validate User Division Entries

During the authentication process for Web-based applications that are KAAJEE-enabled, KAAJEE displays a list of validated institutions to the user. KAAJEE uses the Standard Data Services (SDS) tables 13.0 (or higher) as the authoritative source to validate the list of station numbers that are stored in the <login-station-numbers> tag in the kaajeeConfig.xml file. After a user selects an institution from this validated list, the software follows the VistA authentication process (i.e., Kernel Signon).

	[image: Note]
	NOTE: The validation of the VistA institution occurs before the actual login to the VistA M Server, but after the user selects the Login button on the KAAJEE Web login page. The selected institution is checked against the SDS 18.0 (or higher) tables for an entry and a VistA Provider. Also, KAAJEE checks that an entry exists in the KAAJEE configuration file.



	[image: Note]
	REF: For more information on the <login-station-numbers> tag and/or the kaajeeConfig.xml file, please refer to the "J2EE Application Server Installation Instructions" chapter in the KAAJEE 1.2 on WebLogic 10.3.6 and higher Installation Guide.



The VistA authentication process (i.e., Kernel Signon) requires that each user be associated with at least one division/institution. The local DUZ (2) variable on the VistA M Server stores the Internal Entry Number (IEN) of the login institution. Entries in the DIVISION multiple (#16) in the NEW PERSON file (#200) permit users to sign onto the institution(s) stored in this field. If there are no entries in the DIVISION multiple (#16) of the NEW PERSON file (#200) for the user signing on, information about the login institution comes from the value in the DEFAULT INSTITUTION field (#217) in the KERNEL SYSTEM PARAMETERS file (#8989.3).

Therefore, sites running any application that is used to sign onto VistA must verify that the institution(s) are set up correctly for the application user, as follows:
· Multi-divisional Sites: The DIVISION multiple (#16) in the NEW PERSON file (#200) must be set up for all users. This assures that the application users have access to only those stations for which they are authorized.
· Non-multi-divisional Sites: Sites must verify that the value in the DEFAULT INSTITUTION field (#217) in the KERNEL SYSTEM PARAMETERS file (#8989.3) is correct.


[bookmark: _Toc133913206][bookmark: _Toc188414461]Validate Institution Associations

KAAJEE uses the Standard Data Services (SDS) tables 18.0 (or higher) as the authoritative source for institution data. Data in the ASSOCIATIONS Multiple field (#14) in the local site's INSTITUTION file (#4) is uploaded to FORUM, which is then used to populate the SDS tables. Thus, in order to sign onto VistA the data in the ASSOCIATIONS Multiple field (#14) must have correct information.

The ASSOCIATIONS Multiple is used to link groups of institutions into associations. The ASSOCIATIONS Multiple consists of the following subfields:
· ASSOCIATIONS (#.01)—This field is a pointer to the INSTITUTIONS ASSOCIATION TYPES file (#4.05).
· PARENT OF ASSOCIATION (#1)—This field points back to the INSTITUTION file (#4) to indicate the parent of the association. This field is cross-referenced to find the children of a parent for an association type.

In the ASSOCIATIONS Multiple, child facilities point to their administrative parent. All clinics point to a division parent, all divisions point to a primary facility parent, primary facilities point to an HCS parent or VISN parent. HCS entries point to a VISN parent. Thus, all parent relationships eventually resolve to a VISN. The first entry (IEN=1) in the ASSOCIATIONS Multiple references the VISN to which the division belongs, so that the PARENT OF ASSOCIATION field in that entry must point to a VISN in the INSTITUTION file (#4), and the second entry (IEN=2) references the actual parent of the current institution.

Therefore, sites running any application that is used to sign onto VistA must verify that the ASSOCIATION Multiple field (#14) in the INSTITUTION file (#4) has a file entry for their own institution (and all child divisions if it's a multi-divisional site), and make sure that it is set up correctly. If changes are needed, use the IMF edit option [XUMF IMF ADD EDIT] to update those entries.

	[image: Note]
	REF: For more information on the XUMF IMF ADD EDIT option as well as the ASSOCIATIONS Multiple and PARENT OF ASSOCIATION fields data requirements, please refer to the Institution File Redesign (IFR) supplemental documentation located on the VDL at the following Web address:
http://www.va.gov/vdl/application.asp?appID=9




[bookmark: _Toc167804818][bookmark: _Toc75847059][bookmark: _Toc83538861][bookmark: _Toc84036996][bookmark: _Toc84044218][bookmark: _Toc202863114][bookmark: _Toc204421553]Security Key

The XUKAAJEE_SAMPLE security key is exported with the KAAJEE software in Kernel Patch XU*8*504. This key must be assigned to users on the VistA M Server to authorize their access to the protected page of the KAAJEE sample Web application.


	[image: Note]
	NOTE: For more information on the VistA M Server security key XUKAAJEE_SAMPLE exported with the KAAJEE software, see Table 8‑1 in this documentation.




[bookmark: _Toc167804819]KAAJEE SSPI Tables—Deleting Entries

KAAJEE does not currently purge the two KAAJEE SSPI tables at system startup. It only deletes and recreates individual user entries in the tables during the login process.

	[image: Note]
	REF: For more information regarding the KAAJEE SSPI tables, please refer to the KAAJEE SSPI Installation Guide.


[bookmark: _Hlt200339822]

[bookmark: _Toc200336879][bookmark: _Toc200350314][bookmark: _Ref200351160][bookmark: _Toc204421554][bookmark: _Toc167804820][bookmark: _Toc202863115][bookmark: _Ref67119265][bookmark: _Toc75847060][bookmark: _Toc83538862][bookmark: _Toc84036997][bookmark: _Toc84044219][bookmark: _Toc101683841][bookmark: OLE_LINK27][bookmark: OLE_LINK28]KAAJEE Login Server Requirements

In a domain consisting of an Administration Server and several Managed Servers, the Administration Server must always be running, as new logins through KAAJEE will not succeed while the Administration Server is down.


[bookmark: _Toc167804821]Administrative User

Ensure the Existence of, or Create, a KAAJEE User with Administrative Privileges.  

For KAAJEE to execute correctly, the files web.xml and weblogic.xml has content that declares that KAAJEE will run with the needed privileges.

Check that your WebLogic server already has a user named “KAAJEE” and is part of the Administrators group, or it is part of the Admin global security role. If there is such a user, your installation of the KAAJEE web application will execute properly.  

WebLogic Security Realm:
If you need to create a new user in WebLogic, ensure that:

1.	It is named SSOWAP_USER
2.	It is assigned to the Administrators group

Active Directory Authentication Provider:
If your WebLogic domain has integrated an Active Directory authentication provider, and you will be creating the user in Active Directory, ensure that:

1.	It is named SSOWAP_USER
2.	The user is part of a group that can be mapped in the WebLogic security realm to the Global Security Role named Admin.

The following shows the contents of the web.xml and weblogic.xml files as it pertains to the KAAJEE user.

In the KAAJEE server exploded ear directory, navigate to the web.xml and weblogic.xml files. The directory path is as follows:

<STAGING_FOLDER>\ssowap-8.0.791.war\WEB-INF\

web.xml:
This file has a <run-as> tag, which causes it to run with the necessary administrative privileges. In addition, a corresponding security-role tag is defined. See the sample excerpt below:


[bookmark: _Toc202863037][bookmark: _Toc167811478]Figure 7‑1. Sample excerpt from a web.xml file—Using the run-as and security-role tags
<servlet>
	<servlet-name>LoginController</servlet-name>
	<servlet-class>
		gov.va.med.authentication.kernel.ssowap.servlet.LoginController
	</servlet-class>
       <run-as>
         <role-name>adminuserrole</role-name>
       </run-as>
</servlet>

<security-role>
   <role-name>adminuserrole</role-name>
</security-role>


weblogic.xml:
This file has a <run-as> tag, which causes it to run as an administrative user whose username is “SSOWAP_USER.”  In addition, a corresponding security-role tag is defined. See the sample excerpt below. 


[bookmark: _Toc202863038][bookmark: _Toc167811479]Figure 7‑2. Sample excerpt from a weblogic.xml file—Using the run-as-role-assignment tag
<run-as-role-assignment>
  <role-name>adminuserrole</role-name>
  <run-as-principal-name>SSOWAP_USER</run-as-principal-name>
</run-as-role-assignment>


	[image: Caution]
	Important! The “SSOWAP_USER” user or alternate must exist in the WebLogic Application server and have system administration privileges.


[bookmark: _Hlt200350523]

[bookmark: _Toc167804822]Administrative User configuration

WebLogic 12.2 has strengthened a security model, it is no longer enouph to declare a user with administrative priviledges, in order to create/delete users programmatically a configuration change on the application server must follow:

1. Login into the admin console
2. Click on Lock and Edit:
[bookmark: _Toc167811480]Figure 7‑3 Lock and Edit
[image: Lock and Edit ]

3. Click on Domain, General Tab, Advanced:
[bookmark: _Toc167811481]Figure 7‑4 Domain, General Tab, Advanced
[image: Domain, General Tab, Advanced ]

4. Check the following setting and click Save:
[bookmark: _Toc167811482]Figure 7‑5 Check Setting
[image: Check Setting ]

[bookmark: _Ref202095703][bookmark: _Toc202863116][bookmark: _Toc204421555][bookmark: _Toc167804823]Log4J2 Configuration

[bookmark: OLE_LINK38][bookmark: OLE_LINK39]In order to provide a unified logger and consolidate all log/error entries into one file, all J2EE-based application-specific loggers must be added to the same log4j configuration file, which should be the active log4j configuration file for the server. After locating the active log4j configuration file used on the server you are configuring (e.g., mylog4j.xml file), add in the KAAJEE (and FatKAAT) loggers to that file.

To locate the active log4j configuration file, look for the"-Dlog4j.configuration=" argument in the startup script file (i.e., setDomainEnv.cmd/.sh, or startWebLogic.cmd/.sh). The "-Dlog4j.configuration=" should be set to the absolute location of the configuration file (e.g., c:/mydirectory/mylog4j.xml). If no such argument is present, look for a file named "log4j.xml" in a folder on the server classpath.

You must configure log4j for the first time, if all three of the following conditions exist:
· The "-Dlog4j2.configurationFile=" argument does not exist in the WebLogic JVM startup script files.
· The "log4j2.xml" file does not exist in the classpath.
· [bookmark: OLE_LINK36][bookmark: OLE_LINK37]There is no pre-existing log4j configuration file in the folder placed on the classpath of the WebLogic Application Server containing the configuration files for all HealtheVet-VistA J2EE applications (e.g., <HEV CONFIGURATION FOLDER>).

For first time log4j configuration procedures, please refer to the "log4j Configuration File" topic in the VistALink Installation Guide. Also, sample log4j configuration files are included with the VistALink software distribution.

	[image: Note]
	REF: For more information on VistALink, please refer to the following Web site: :
http://vaww.vista.med.va.gov/vistalink/



Once the log4j file is initially configured, you need to configure the file specifically for KAAJEE log entries as outlined in the KAAJEE Installation Guide.

	[image: Note]
	REF: For the specific step-by-step procedures on how to configure the log4j for KAAJEE, please refer to the "Configure log4j for All J2EE-based Application Log Entries" topic in the KAAJEE Installation Guide.



	[image: Note]
	REF: For more information on log4j guidelines, please refer to the Application Structure & Integration Services (ASIS) Log4j Guidelines for HealtheVet-VistA Applications document available at the following Website:
http://vista.med.va.gov/vistaarch/healthevet/Documents/Log4j%20Guidance%201.0.doc




[bookmark: _Toc202863117][bookmark: _Toc204421556][bookmark: _Toc167804824][bookmark: _Toc6134535][bookmark: _Toc74988214][bookmark: _Toc75847062][bookmark: _Toc83538864][bookmark: _Toc84036999][bookmark: _Toc84044221]Log Monitoring

Log4J Log

In test, developers use this log during Web application development as a debugging tool. It can provide detailed context for application and authentication failures. It is a complimentary tool for testing applications.

In production, Web administrators should monitor this log. If a problem is detected and developers or the Web administrators are unable to resolve it, the user should call the National Help Desk and file a Remedy ticket.

The following figure (Figure 7-6) shows sample data in the log4j file:
[bookmark: _Ref134522360][bookmark: _Toc167811483][bookmark: _Toc202863039]Figure 7‑6. 
[bookmark: _Hlt200359362].
.
.
1221895406 2006-05-02 14:51:53,252 [ExecuteThread: '14' for queue: 'weblogic.kernel.Default'] DEBUG gov.va.med.authentication.kernel.KaajeeHttpSessionListener:sessionDestroyed:41 - Session destroyed GXSXGMQCLDx3STLtSLNMQ1zZSGzLSfsBZ9Dsf6p1hmTTGNz7S76l!-1114227413!1146606295311
1221895406 2006-05-02 14:51:53,252 [ExecuteThread: '14' for queue: 'weblogic.kernel.Default'] DEBUG gov.va.med.authentication.kernel.KaajeeHttpSessionListener:sessionDestroyed:46 - Got LoginUserInfoVO object.
        matchManagedConnection->gov.va.med.vistalink.adapter.spi.VistaLinkManagedConnection[]10.6.21.15[]18001[]1[]J2EE[fdi]2[mdi]1->gov.va.med.vistalink.adapter.spi.VistaLinkConnectionRequestInfo->gov.va.med.authentication.kernel.KaajeeVistaLinkConnectionSpec->av
        matchManagedConnection->no match on request info->gov.va.med.vistalink.adapter.spi.VistaLinkManagedConnection[]10.6.21.15[]18001[]1[]J2EE[fdi]2[mdi]1->gov.va.med.vistalink.adapter.spi.VistaLinkConnectionRequestInfo->gov.va.med.authentication.kernel.KaajeeVistaLinkConnectionSpec->av
        Connection re-authentication status: 'notauthenticated'. cri = gov.va.med.vistalink.adapter.spi.VistaLinkConnectionRequestInfo->gov.va.med.authentication.kernel.KaajeeVistaLinkConnectionSpec->av
1221895419 2006-05-02 14:51:53,265 [ExecuteThread: '14' for queue: 'weblogic.kernel.Default'] DEBUG gov.va.med.authentication.kernel.LoginControllerUtils:getVistaLinkConnection:178 - got connection.
1221895447 2006-05-02 14:51:53,293 [ExecuteThread: '14' for queue: 'weblogic.kernel.Default'] DEBUG gov.va.med.authentication.kernel.LogoutController:performLogoutActions:74 - Executed RPC to mark signon log at station #'662BU' for user DUZ '1000098' logged off for signon log IEN '3060502.144534'.
1221895450 2006-05-02 14:51:53,296 [ExecuteThread: '14' for queue: 'weblogic.kernel.Default'] DEBUG gov.va.med.authentication.kernel.KaajeeSessionAttributeListener:attributeRemoved:42 - Attribute removed: gov.va.med.authentication.kernel.LoginUserInfo
1221895451 2006-05-02 14:51:53,297 [ExecuteThread: '14' for queue: 'weblogic.kernel.Default'] DEBUG gov.va.med.authentication.kernel.KaajeeSessionAttributeListener:attributeRemoved:47 - Found LoginUserInfoVO object.
1221895464 2006-05-02 14:51:53,310 [ExecuteThread: '14' for queue: 'weblogic.kernel.Default'] DEBUG gov.va.med.authentication.kernel.LoginControllerUtils:getVistaLinkConnection:178 - got connection.
1221895476 2006-05-02 14:51:53,322 [ExecuteThread: '14' for queue: 'weblogic.kernel.Default'] DEBUG gov.va.med.authentication.kernel.LogoutController:performLogoutActions:74 - Executed RPC to mark signon log at station #'662BU' for user DUZ '1000098' logged off for signon log IEN '3060502.144534'.
.
.


In the sample log entries above (Figure 7‑6), only the KAAJEE-specific logout-related entries are displayed, the VistALink entries have been filtered out. If included, the VistALink entries would show the "about to execute RPC:" and the "Completed execution of RPC:  'XUS KAAJEE LOGOUT'."


M-side Log

This event log records VistA M Server-related errors. IRM should monitor this log for any errors related to KAAJEE and take appropriate actions to remedy the error.


Sign-On Log

This event log records all users that sign onto the VistA M Server via Kernel in the SIGN-ON LOG file (#3.081). IRM should monitor this log. IRM should check for unusual activity (e.g., unusual amount of activity for a given user). If there is an unusual amount of activity for a particular user, IRM should further investigate by contacting the user in question and taking appropriate action as deemed appropriate.

	[image: Note]
	REF: For more information on the SIGN-ON LOG file (#3.081), please refer to the Kernel Systems Management Guide.




Failed Access Attempts Log

This event log records users that fail to enter a valid Access/Verify code pair. IRM should monitor this log and check for unusual activity (e.g., unusual amount of activity for a given user). If there is an unusual amount of activity for a particular user, IRM should further investigate by contacting the user in question and taking appropriate action as deemed appropriate.


[bookmark: _Ref100027246][bookmark: _Toc202863118][bookmark: _Toc204421557][bookmark: _Toc167804825]Remote Procedure Calls (RPCs)

The following remote procedure calls (RPC) are exported with KAAJEE (listed alphabetically):
[bookmark: _Ref78248563][bookmark: _Toc83538929]
[bookmark: _Hlt200359350]
[bookmark: _Ref134001279][bookmark: _Ref99948130][bookmark: _Toc202863040][bookmark: _Toc204421637][bookmark: _Toc167811519]Table 7‑1. KAAJEE-related RPC list
	RPC Name
	RPC Description

	XUS ALLKEYS 
	Kernel Patch XU*8.0*329 exports this RPC. This RPC returns all J2EE VistA M Server J2EE security keys (i.e., those security keys with the SEND TO J2EE field [#.05] in the SECURITY KEY file [#19.1] set to YES).

	XUS GET USER INFO
	Kernel Patch XU*8.0*115 exports this RPC. It returns information about a user after logon. The VPID is returned through this RPC.

	XUS KAAJEE GET CCOW TOKEN
	Kernel Patch XU*8.0*504 exports this RPC. This RPC returns a CCOW token that is associated with the remote client IP address.

	XUS KAAJEE GET USER INFO
	Kernel Patch XU*8.0*329 exports this RPC. This RPC returns a variety of user demographics and other information (e.g. DUZ, user name, degree, Station Numbers, etc.) needed for users to sign onto the VistA M Server via KAAJEE.
It returns the following in the results array.
RESULT(0)—User's DUZ from the NEW PERSON file (#200).
RESULT(1)—User name from the .01 field of the NEW PERSON file (#200).
RESULT(2)—User's full name from the NAME COMPONENTS file (#20).
RESULT(3)—FAMILY (LAST) NAME from the NAME COMPONENTS file (#20).
RESULT(4)—GIVEN (FIRST) NAME from the NAME COMPONENTS file (#20).
RESULT(5)—MIDDLE NAME from the NAME COMPONENTS file (#20).
RESULT(6)—PREFIX from the NAME COMPONENTS file (#20).
RESULT(7)—SUFFIX from the NAME COMPONENTS file (#20).
RESULT(8)—DEGREE from the NAME COMPONENTS file (#20).
RESULT(9)—Station Number of the division in which the user is working.
RESULT(10)—Station Number of the parent facility for the login division from the INSTITUTION file (#4).
RESULT(11)—Station Number of the parent "computer system" from the KERNEL SITE PARAMETERS file (#8989.3).
RESULT(12)—Signon log entry IEN.
RESULT(13)—Number of permissible divisions.
RESULT(14 - n)—Permissible divisions for user login, in the following format:
IEN of file 4^Station Name^Station Number^default? (1 or 0)

	XUS KAAJEE GET USER VIA PROXY
	Kernel Patch XU*8.0*504 exports this RPC. This RPC returns a variety of user demographics and other information (e.g. DUZ, user name, degree, Station Numbers, etc.) needed for users to sign onto the VistA M Server via KAAJEE.  The result is the same as the XUS KAAJEE GET USER INFO RPC above.  This RPC is invoked via the KAAJEE,PROXY Application Proxy User.

	XUS KAAJEE LOGOUT
	Kernel Patch XU*8.0*329 exports this RPC. This RPC calls the LOUT^XUSCLEAN API in order to mark a KAAJEE-signed on user's entry in the SIGN-ON LOG file (#3.081) as signed off.




	[image: Note]
	REF: For more information on these RPCs, please refer to the REMOTE PROCEDURE file (#8994) or the Kernel RPC Website located at the following Website:
http://vista.med.va.gov/kernel/rpcs/index.shtml





[bookmark: _Ref71604164][bookmark: _Toc74988218][bookmark: _Toc75847063][bookmark: _Toc83538865][bookmark: _Toc84037000][bookmark: _Toc84044222][bookmark: _Toc202863119][bookmark: _Toc204421558][bookmark: _Toc167804826]Files and Fields

There are no new VistA M Server files or fields directly exported with KAAJEE; however, the following modified file and new field are associated with KAAJEE and exported with Kernel Patch XU*8.0*337:

[bookmark: _Hlt200359326]
[bookmark: _Toc202863041][bookmark: _Toc167811520]Table 7‑2. KAAJEE-related software new fields
	File Number
	File Name
	Field Name
	Field Number
	Field Description

	19.1
	SECURITY KEY
	SEND TO J2EE
	.05
	This field was released with Kernel Patch XU*8.0*337. It indicates whether or not a VistA M Server security key is a J2EE-related security key and should be sent to the application server for temporary role assignment. Application developers must set this field to YES for those security keys that correspond to WebLogic group names that are stored in the application's weblogic.xml file.
[image: Note] REF: For more information on J2EE security–related keys and WebLogic groups, please refer to "2.	Create VistA M Server J2EE Security Keys Corresponding to WebLogic Group Names" topic in Chapter 5, "Role Design/Setup/Administration," in this manual.




[bookmark: _Toc127246573][bookmark: _Toc202863120][bookmark: _Toc204421559][bookmark: _Toc167804827]Global Mapping/Translation, Journaling, and Protection

There are no special global mapping/translation, journaling, and protection instructions for KAAJEE.
[bookmark: _Toc6134539]

[bookmark: _Toc167804828]Application Proxies

The software infrastructure required by J2EE middle-tier applications for the creation and use of the Application Proxy User and the ability to invoke a special category of authorized RPCs was initially provided by Kernel Patch XU*8.0*361 and VistALink 1.5 and continues to be supported.

Kernel Patch XU*8.0*504 exports and/or sets up the following software infrastructure required for the creation and use of the KAAJEE Application Proxy User:
· Adds "KAAJEE,PROXY" to the NEW PERSON file (#200) as the unique name of the KAAJEE Application Proxy User.
· Sets the USER CLASS field (#9.5) in the NEW PERSON file (#200) to "Application Proxy" for the KAAJEE,PROXY Application Proxy User.
· Assigns the XUS KAAJEE PROXY LOGON "B"-type Secondary menu option to the KAAJEE,PROXY Application Proxy User.
· Sets the APP PROXY ALLOWED field (#.11) in the REMOTE PROCEDURE file (#8994) to "YES" for each of the following RPCs executed by the KAAJEE,PROXY Application Proxy User:
· XUS KAAJEE GET USER VIA PROXY 


[bookmark: _Toc74988221][bookmark: _Toc75847066][bookmark: _Toc83538868][bookmark: _Toc84037003][bookmark: _Toc84044225][bookmark: _Toc202863122][bookmark: _Toc204421561][bookmark: _Toc167804829]Exported Options

The following menu options are exported with KAAJEE (listed alphabetically):

[bookmark: _Hlt200359295]
[bookmark: _Toc202863043][bookmark: _Toc167811521]Table 7‑3. KAAJEE exported options
	Option Name
	Option Description

	XUCOMMAND
	This menu option is used to link the XUS KAAJEE WEB LOGON option. As all authenticated users have access to XUCOMMAND, this linkage enables all users to have access to all RPCs listed under the XUS KAAJEE LOGON "B"-type option.

	XUS KAAJEE WEB LOGON
	This "B"-type option contains references to the following RPCs in its "RPC" multiple:
· XUS ALLKEYS
· XUS KAAJEE GET USER INFO
· XUS KAAJEE LOGOUT
· XUS KAAJEE GET CCOW TOKEN
This option has no effect on those RPCs as such; however, having this option assigned allows KAAJEE to call these RPCs on behalf of the end-user.

	XUS KAAJE PROXY LOGON
	This "B"-type option contains references to the following RPC in its "RPC" multiple:
· XUS KAAJEE GET USER VIA PROXY
This option has no effect on those RPCs as such; however, having this option assigned allows KAAJEE to call these RPCs on behalf of the end-user.




	[image: Note]
	REF: For more information on KAAJEE-related RPCs, please refer to the "Remote Procedure Calls (RPCs)" topic in this chapter.




[bookmark: _Toc477786020][bookmark: _Toc6134540][bookmark: _Toc74988222][bookmark: _Toc75847067][bookmark: _Toc83538869][bookmark: _Toc84037004][bookmark: _Toc84044226][bookmark: _Toc202863123][bookmark: _Toc204421562][bookmark: _Toc167804830]Archiving and Purging

There are no special archiving, purging, or journaling instructions for KAAJEE.

	[image: Note]
	REF: For more information regarding the KAAJEE SSPI tables, please refer to the KAAJEE Installation Guide.




[bookmark: _Toc74988223][bookmark: _Toc75847068][bookmark: _Toc83538870][bookmark: _Toc84037005][bookmark: _Toc84044227][bookmark: _Toc202863124][bookmark: _Toc204421563][bookmark: _Toc167804831]Callable Routines

There are no callable VistA M Server routines exported with KAAJEE.


[bookmark: _Ref71606219][bookmark: _Toc74988224][bookmark: _Toc75847069][bookmark: _Toc83538871][bookmark: _Toc84037006][bookmark: _Toc84044228][bookmark: _Toc202863125][bookmark: _Toc204421564][bookmark: _Toc167804832]External Relations

[bookmark: _Toc44314767][bookmark: _Toc67882433][bookmark: _Toc74988225][bookmark: _Toc75847070]HealtheVet-VistA Software Requirements

KAAJEE relies on the following HealtheVet-VistA software to run effectively (listed alphabetically):

[bookmark: _Hlt200359277]
[bookmark: _Ref69788782][bookmark: _Toc69788760][bookmark: _Toc74988164][bookmark: _Toc83538932][bookmark: _Toc202863044][bookmark: _Toc167811522]Table 7‑4. External Relations—HealtheVet-VistA software
	Software
	Version
	Description

	Kernel
	8.0
	Server software—Fully patched.

	Kernel Toolkit
	7.3
	Server software—Fully patched.

	RPC Broker
	1.1
	Client/Server software—Fully patched.

	Standard Data Services (SDS)
	18.0
(or higher)
	Oracle 11g Database and Software—Fully patched. Contains Institution-related data tables accessed via supported APIs created by SDS.
[image: Note] NOTE: KAAJEE works with SDS 19.0 or higher; however, XU_8_749 distributes SDS 19.0 client jar files as part of the Sample Web Application. If you deploy the both the KAAJEE Sample Web Application and your own Web-based application on the same WebLogic Application Server domain instance and intend to use a different version of SDS, those client jar files will need to be swapped out for the appropriate version of the SDS client jar files. Otherwise, There may be a conflict if both applications reference the same JNDI tree.

	VA FileMan
	22.2
	Server software—Fully patched.

	VistALink
	1.6.1
	Client/Server software—Fully patched.




[bookmark: _Toc74988226][bookmark: _Toc75847071]COTS Software Requirements

The KAAJEE authorization and authentication software interface with the following Commercial-Off-The-Shelf (COTS) software products in order to run effectively (listed alphabetically):

[bookmark: _Hlt200359261]
[bookmark: _Ref206572811][bookmark: _Toc167811523]Table 7‑5. External Relations—COTS software
	Software
	Version
	Description

	WebLogic
	12.2
	Application server software—Fully patched.

	Java IDE (e.g., MyEclipse/
Eclipse)
	Any
	Developer workstation software—The Java Integrated Development Environment (IDE) is used when developing J2EE Web-based applications that are KAAJEE-enabled.

	Java 2 Standard Edition (J2SE) Java Development Kit (JDK, e.g., Sun Microsystems')
	Java 8
	Developer workstation software—Fully patched. The JDK is used when developing J2EE Web-based applications that are KAAJEE-enabled. The JDK should include Java Runtime Environment (JRE) and other developer tools to write Java code.

	Sentillion Web Software Development Kit (SDK)
	TBD
	Developer workstation software—The SDK is used when developing CCOW-aware and KAAJEE-enabled applications.

	[bookmark: _Toc74988165][bookmark: _Toc83538933][bookmark: _Toc202863045][bookmark: _Ref71606243]Sentillion Web Software Development Kit (SDK)
	TBD
	Developer Client Workstation software—The SDK is used when developing CCOW-aware and FatKAAT-enabled applications.




	[image: Note]
	NOTE: There are no other COTS (non-VA) products embedded in or requiring special interfaces by this version of KAAJEE, other than those provided by the underlying operating systems.




[bookmark: _Toc423486597][bookmark: _Toc67882434][bookmark: _Toc74988227][bookmark: _Toc75847072]
DBA Approvals and Database Integration Agreements

[bookmark: _Hlk520464709]The Database Administrator (DBA) maintains a list of Integration Agreements (IAs) or mutual agreements between software developers allowing the use of internal entry points or other software-specific features that are not available to the general programming public. These IAs are listed on FORUM.

KAAJEE is not dependent on any IAs; however, Kernel is the custodial package of KAAJEE Integration Agreement (IA) #4851.

To obtain the current list of IAs, if any, to which the Kernel (KAAJEE-related) software is a custodian:
1.	Sign on to the FORUM system (forum.va.gov).
2.	Go to the Database Administrator (DBA) menu [DBA].
3.	Select the Integration Agreements Menu option [DBA IA ISC].
4.	Select the Custodial Package Menu option [DBA IA CUSTODIAL MENU].
5.	Choose the ACTIVE by Custodial Package option [DBA IA CUSTODIAL].
6.	When this option prompts you for a package, enter XXXX—Where XXXX equals: XU or Kernel.
7.	All current IAs to which the software is a custodian are listed.


To obtain detailed information on a specific integration agreement:
1.	Sign on to the FORUM system (forum.va.gov).
2.	Go to the DBA menu [DBA].
3.	Select the Integration Agreements Menu option [DBA IA ISC].
4.	Select the Inquire option [DBA IA INQUIRY].
5.	When prompted for "INTEGRATION REFERENCES," enter the specific integration agreement number of the IA you would like to display.
6.	The option then lists the full text of the IA you requested.


To obtain the current list of IAs, if any, to which the Kernel (KAAJEE-related) software is a subscriber:
1.	Sign on to the FORUM system (forum.va.gov).
2.	Go to the DBA menu [DBA].
3.	Select the Integration Agreements Menu option [DBA IA ISC].
4.	Select the Subscriber Package Menu option [DBA IA SUBSCRIBER MENU].
5.	Choose the Print ACTIVE by Subscribing Package option [DBA IA SUBSCRIBER].
6.	When prompted with "START WITH SUBSCRIBING PACKAGE," enter XXXX (in uppercase). When prompted with "GO TO SUBSCRIBING PACKAGE," enter XXXX (in uppercase)—Where "XXXX" equals: XU.
7.	All current IAs to which the software is a subscriber are listed.


[bookmark: _Toc322413611][bookmark: _Toc322420240][bookmark: _Toc322426326][bookmark: _Toc322494205][bookmark: _Toc451216712][bookmark: _Toc477786030][bookmark: _Toc477932449][bookmark: _Toc6134543][bookmark: _Toc74988228][bookmark: _Toc75847073][bookmark: _Toc83538872][bookmark: _Toc84037007][bookmark: _Toc84044229][bookmark: _Toc202863126][bookmark: _Toc204421565][bookmark: _Toc167804833]Internal Relations

[bookmark: _Toc67882437][bookmark: _Ref69789132][bookmark: _Toc74988229][bookmark: _Toc75847074][bookmark: _Toc322413612][bookmark: _Toc322420241][bookmark: _Toc322426327][bookmark: _Toc322494206]Relationship of KAAJEE with the VistA M Server

[bookmark: _Toc423486598][bookmark: _Toc67882440]Namespace

KAAJEE consists of VistA M Server patches that have been assigned to the following namespaces (listed alphabetically):
· XU—Kernel
· XWB—RPC Broker

In order to develop J2EE Web-based applications so that they can be authorized and authenticated against Kernel, VistALink 1.6 software must be installed on the application server as well as Kernel 8.0 (fully patched).

VistALink 1.6 software (i.e., XOBS 1.5; fully patched) must be installed on the developer workstation and the application server.


[bookmark: _Toc74988230][bookmark: _Toc75847075][bookmark: _Toc83538873][bookmark: _Toc84037008][bookmark: _Toc84044230][bookmark: _Toc202863127][bookmark: _Toc204421566][bookmark: _Toc167804834][bookmark: _Toc322413614][bookmark: _Toc322420243][bookmark: _Toc322426329][bookmark: _Toc322494208]Software-wide and Key Variables

KAAJEE does not employ the use of software-wide or key variables on the VistA M Server.
[bookmark: _Toc451216716][bookmark: _Toc477786034][bookmark: _Toc477932453][bookmark: _Toc6134549][bookmark: _Toc322413617][bookmark: _Toc322420246][bookmark: _Toc322426332][bookmark: _Toc322494211]

[bookmark: _Toc74988231][bookmark: _Toc75847076][bookmark: _Toc83538874][bookmark: _Toc84037009][bookmark: _Toc84044231][bookmark: _Toc202863128][bookmark: _Toc204421567][bookmark: _Toc167804835]SACC Exemptions

KAAJEE does not have any Programming Standards and Conventions (SAC) exemptions.
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[bookmark: _Hlt171498580][bookmark: _Hlt171918529][bookmark: _Hlt178483153][bookmark: _Toc74988232][bookmark: _Toc75847077][bookmark: _Toc83538875][bookmark: _Toc84037010][bookmark: _Toc84044232][bookmark: _Toc202863129][bookmark: _Toc204421568][bookmark: _Toc167804836]Software Product Security


[bookmark: _Toc6044920][bookmark: _Toc44314779][bookmark: _Toc67882444][bookmark: _Toc74988233][bookmark: _Toc75847078][bookmark: _Toc83538876][bookmark: _Toc84037011][bookmark: _Toc84044233][bookmark: _Toc202863130][bookmark: _Toc204421569][bookmark: _Toc167804837]Security Management

There are no special legal requirements involved in the use of Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE).


[bookmark: _Toc6044921][bookmark: _Toc44314780][bookmark: _Toc67882445][bookmark: _Toc74988234][bookmark: _Toc75847079][bookmark: _Toc83538877][bookmark: _Toc84037012][bookmark: _Toc84044234][bookmark: _Toc111958114][bookmark: _Toc202863131][bookmark: _Toc204421570][bookmark: _Toc167804838]Mail Groups, Alerts, and Bulletins

[bookmark: _Toc67882446][bookmark: _Toc74988235][bookmark: _Toc75847080]Mail Groups

KAAJEE does not create or utilize any specific mail groups.


[bookmark: _Toc67882447][bookmark: _Toc74988236][bookmark: _Toc75847081]Alerts

KAAJEE does not make use of alerts.


Bulletins

KAAJEE does not make use of bulletins.


[bookmark: _Toc75847082][bookmark: _Toc83538878][bookmark: _Toc84037013][bookmark: _Toc84044235][bookmark: _Toc202863132][bookmark: _Toc204421571][bookmark: _Toc167804839]Auditing—Log Monitoring

[bookmark: _Toc75847083]Log4J Log

In test, developers use this log during Web application development as a debugging tool. It can provide detailed context for application failures. It is a complimentary tool for testing applications.

In production, the Enterprise Management Center (EMC) and/or Application Server Administrators should monitor this log. If a problem is detected and developers or the administrators are unable to resolve it, the user should call the National Help Desk and file a Remedy ticket.


M-side Log

This event log records VistA M Server-related errors. Information Resource Management (IRM) should monitor this log for any errors related to KAAJEE and take appropriate actions to remedy the error.


[bookmark: _Toc75847084]Sign-On Log

This event log records all users that sign onto the VistA M Server via Kernel in the SIGN-ON LOG file (#3.081). IRM should monitor this log. IRM should check for unusual activity (e.g., unusual amount of activity for a given user). If there is an unusual amount of activity for a particular user, IRM should further investigate by contacting the user in question and taking appropriate action as deemed appropriate.


Failed Access Attempts Log

This event log records users that fail to enter a valid Access/Verify code pair. IRM should monitor this log. IRM should check for unusual activity (e.g., unusual amount of activity for a given user). If there is an unusual amount of activity for a particular user, IRM should further investigate by contacting the user in question and taking appropriate action as deemed appropriate.


[bookmark: _Toc202863133][bookmark: _Toc204421572][bookmark: _Toc167804840]Remote Access/Transmissions

For every user logon, Web browser applications on the client workstation transmit/receive data using Hyper Text Transport Protocol (HTTP) to communicate with KAAJEE-enabled applications deployed on the application server.

	[image: Note]
	NOTE: HTTP rides over Transmission Control Protocol/Internet Protocol (TCP/IP) in the payload packet.



On the application server, KAAJEE-enabled Web-based applications call the KAAJEE login/authentication component, which then calls VistALink using APIs. VistALink uses Transmission Control Protocol/Internet Protocol (TCP/IP) to transmit data to and receive data from VistA M Servers.

The KAAJEE SSPIs on the application server use Java Database Connector (JDBC) to query the remote security store database (e.g., Oracle), which holds the temporary username and password. KAAJEE also uses the SDS APIs to query tables on the remote national SDS database.

After authentication, applications can optionally make subsequent VistALink calls to run any RPCs authorized to the authenticated user.


[bookmark: _Toc74988238][bookmark: _Toc75847087][bookmark: _Toc83538880][bookmark: _Toc84037015][bookmark: _Toc84044237][bookmark: _Toc202863134][bookmark: _Toc204421573][bookmark: _Toc167804841]Interfaces

The KAAJEE and KAAJEE SSPIs software interfaces with the following VA software:
· VistALink 1.6
· Standard Data Services (SDS) tables 19.0 (or higher).

	[image: Note]
	NOTE: KAAJEE works with SDS 19.0 or higher; If you deploy the both the KAAJEE Sample Web Application and your own Web-based application on the same WebLogic Application Server domain instance and intend to use a different version of SDS, those client jar files will need to be swapped out for the appropriate version of the SDS client jar files. Otherwise, There may be a conflict if both applications reference the same JNDI tree.address:
http://vaww.sts.infoshare.va.gov/STS_SDS/Project%20Artifacts/Forms/AllItems.aspx



	[image: Note]
	REF: For more information on Common Services and SDS tables, please visit the following Website:
http://vaww.sts.infoshare.va.gov/STS_SDS/Project%20Artifacts/Forms/AllItems.aspx




KAAJEE Classic and KAAJEE SSPIs interfaces with the following non-VA Commercial-Off-The-Shelf (COTS) products/software:
· Oracle or Caché databases.
· WebLogic 12.2 and higher Application Servers

	[image: Note]
	NOTE: There are no other COTS (non-VA) products embedded in or requiring special interfaces by this version of KAAJEE, other than those provided by the underlying operating systems.




[bookmark: _Toc74988239][bookmark: _Toc75847088][bookmark: _Toc83538881][bookmark: _Toc84037016][bookmark: _Toc84044238][bookmark: _Toc202863135][bookmark: _Toc204421574][bookmark: _Toc167804842]Electronic Signatures

There are no electronic signatures used within KAAJEE 1.2.0.xxx.


[bookmark: _Toc6134552][bookmark: _Toc74988240][bookmark: _Toc75847089][bookmark: _Toc83538882][bookmark: _Toc84037017][bookmark: _Toc84044239][bookmark: _Toc202863136][bookmark: _Toc204421575][bookmark: _Toc167804843]Security Keys

The following VistA M Server security key is exported with KAAJEE 1.2.0.xxx:

[bookmark: _Ref236561832][bookmark: _Toc137951945][bookmark: _Toc204421643][bookmark: _Toc167811524]Table 8‑1. KAAJEE exported security keys
	Security Key
	Description

	XUKAAJEE_SAMPLE
	This security key is exported with Kernel Patch XU*8.0*504. This security key is required in order to access the KAAJEE Sample Web Application exported with KAAJEE. First, an initial authentication occurs against a VistA M Server (i.e., Access and Verify codes). Then, if the login user passes this phase, the XUKAAJEE_SAMPLE VistA M security key is used to create a J2EE group/principal of the same name on the J2EE Application Server, if not already created. In addition, the login user will be assigned membership to this group on the J2EE Application Server during the login session. This membership is necessary as the authorization aspect of container security. It validates the role-based access by the membership of the associated group/principal.
The XUKAAJEE_SAMPLE security key must be assigned to users on the VistA M Server to authorize their access to the protected page of the KAAJEE sample Web application.


[bookmark: _Hlt127857553]

	[image: Note]
	NOTE: KAAJEE calls the XUS ALLKEYS RPC to return all VistA M Server J2EE security keys; however, there are no new KAAJEE-specific VistA M Server security keys exported with this version of KAAJEE.




[bookmark: _Toc44314785][bookmark: _Toc67882452][bookmark: _Toc74988241][bookmark: _Toc75847090][bookmark: _Toc83538883][bookmark: _Toc84037018][bookmark: _Toc84044240][bookmark: _Toc202863137][bookmark: _Toc204421576][bookmark: _Toc167804844]File Security

There are no new file or field security changes associated with KAAJEE.


[bookmark: _Toc202863138][bookmark: _Toc204421577][bookmark: _Toc167804845][bookmark: _Toc6044927][bookmark: _Toc44314786][bookmark: _Toc67882453][bookmark: _Toc74988242][bookmark: _Toc75847091][bookmark: _Toc83538884][bookmark: _Toc84037019][bookmark: _Toc84044241]Contingency Planning

All sites should develop a local contingency plan to be used in the event of software/hardware problems in a production (live) environment. The contingency plan must identify the procedure for maintaining functionality provided by this software in the event of system outage.


[bookmark: _Toc202863139][bookmark: _Toc204421578][bookmark: _Toc167804846]Official Policies

There are no special legal requirements involved in the use of KAAJEE.

Distribution of KAAJEE is unrestricted.

As per the Software Engineering Process Group/Software Quality Assurance (SEPG/SQA) Standard Operating Procedure (SOP) 192-039—Interface Control Registration and Approval (effective 01/29/01), application programmers must not alter any HealtheVet VistA Class I software code.

	[image: Note]
	REF: For more information on SOP 192-039—Interface Control Registration and Approval, please refer to the following Website:
http://vista.med.va.gov/SEPG_lib/Standard%20Operating%20Procedures/192-039%20Interface%20Control%20Registration%20and%20Approval.htm


[bookmark: _Hlt178483155][bookmark: _Hlt171498582]
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[bookmark: _Hlt171918537][bookmark: _Toc75847092][bookmark: _Toc83538885][bookmark: _Toc84037020][bookmark: _Toc84044242][bookmark: _Ref99964246][bookmark: _Toc202863140][bookmark: _Toc204421579][bookmark: _Toc167804847]Cactus Testing with KAAJEE SSOWAP


Cactus is a simple test framework for unit testing server-side Java code (servlets, Enterprise JavaBeans [EJBs], tag libs, filters, etc.).[footnoteRef:8] Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE) supports testing with the Cactus container-based unit testing tool. It is possible that other container-based unit testing tools could be supported as well, but Cactus is the one that is the basis of developing KAAJEE's unit test support. [8:  "The Apache Jakarta Project;" Overview of Cactus WebWeb site: http://jakarta.apache.org/cactus/, last updated 2/15/05.] 


	[image: Note]
	NOTE: This chapter assumes that the reader has a basic understanding of the Jakarta Cactus unit testing tool.



	[image: Note]
	REF: For more information on the Cactus testing tool, please visit the Jakarta Cactus Website at the following Website:
http://jakarta.apache.org/cactus/




[bookmark: _Toc75847093][bookmark: _Toc83538886][bookmark: _Toc84037021][bookmark: _Toc84044243][bookmark: _Toc99879994][bookmark: _Toc202863141][bookmark: _Toc204421580][bookmark: _Toc167804848][bookmark: _Toc75847094][bookmark: _Toc83538887][bookmark: _Toc84037022][bookmark: _Toc84044244]Enabling Cactus Unit Test Support

To enable Cactus unit test support, do the following:
1.	Switch from FORM to BASIC authentication. For example, In your J2EE Web-based application's web.xml, code as follows:


[bookmark: _Toc204421644][bookmark: _Toc167811484]Figure 9‑1. Switching from FORM to BASIC in web.xml example
  <login-config>
        <auth-method>BASIC</auth-method>
        <form-login-config>
        <form-login-page>/login/login.jsp</form-login-page>
        <form-error-page>login/loginerror.jsp</form-error-page>
        </form-login-config> -->
  </login-config>
[bookmark: _Hlt200359231]
2.	Turn on Cactus Support in the KAAJEE configuration file, set the following tag to "true" (case sensitive):
<cactus-insecure-mode enabled="true" />

	[image: Caution]
	This mode should never be enabled on a production system. It defaults to "false" unless enable is specifically set to "true" (case sensitive).



Essentially, this switch turns the "one-time login token" to a "many-time login token," allowing the re-use of login credentials over repeated Cactus unit tests.
3.	Add the normal required Cactus configuration information into your application's web.xml.


[bookmark: _Toc202863142][bookmark: _Toc204421581][bookmark: _Toc167804849]Using Cactus in a KAAJEE-Secured Application

There are probably several approaches to obtaining a login credential on your Cactus test client side, to use to login on the container side. Essentially:
· Start with a valid-for-login Access code, Verify code and Division.
· Pass these, on the container side, to the LoginController.getFormsAuthCredentialsForCactus().
· The return value (for valid login credentials) is an object that contains valid j_username and j_password values.


How do you do this?

One approach is:
1.	Configure both secured and unsecured Cactus test redirector servlets in your Web-based application's web.xml deployment descriptor.
2.	Create one Cactus test in your test suite that uses an unsecured ServletRedirector Cactus test redirector servlet. This application will gather a set of login credentials from the server. 
· The beginXXX, testXXX and endXXX methods should be, sequentially in your test class source code, the first set of tests. Cactus/JUnit appear to follow source code order when sequencing test execution.
· This unsecured Cactus test should start with the Access code, Verify code, and Division. These could be hard-coded into the test class, or could be kept in a client-side configuration file, read on the client during the beginXXX method, and passed to the server-side testXXX method as session attributes.
· In the server-side testXXX method, call the KAAJEE LoginController class's static getFormsAuthCredentialsForCactus method to obtain a valid j_username and j_password value. These are returned in a KAAJEE CactusFormsAuthCredentialVO object.
· In the server-side testXXX method, you could also obtain and cache the LoginUserInfoVO object. The getFormsAuthCredentialsForCactus will put this into the testXXX method's session object if you pass that as a parameter. You need to store this somewhere on the server so you can retrieve it in subsequent testXXX methods; the example below stores it in a static class variable in the server-side version of the test class.
· Using the toString() method of the CactusFormsAuthCredentialVO object, write the credentials to the Web page output, using the servlet's PrintWriter.
· Back on the client in the endXXX method, instantiate a new CactusFormsAuthCredentialVO object, using the complete Web response as input. The CactusFormsAuthCredentialVO class can instantiate itself by looking for its own "toString" output in any given string.
· On the client side, again in the endXXX method, store these values (the CactusFormsAuthCredentialVO object provides a valid j_username and j_password) in a static class variable in the test class.
3.	If you are caching the LoginUserInfoVO object in the server instance of the test class, you could add code in the setUp() method (executed before every testXXX method) to put the LoginUserInfoVO object back into session, for use as needed by each testXXX method.
4.	For the rest of the Cactus tests in the test class, use the secured ServletRedirector (specify in the beginXXX method), and pass the credentials using a Cactus BasicAuthentication object. The testXXX methods should all run in the server context created by the login of the secure ServletRedirector.

This approach has been tested for ServletTestCase. While it should work for JspTestCase, it has not been tested.


[bookmark: _Toc75847095][bookmark: _Toc83538888][bookmark: _Toc84037023][bookmark: _Toc84044245][bookmark: _Toc202863143][bookmark: _Toc204421582][bookmark: _Toc167804850]Cactus ServletTestCase Example


[bookmark: _Toc202863047][bookmark: _Toc167811485]Figure 9‑2. Cactus ServletTestCase example
[bookmark: _Hlt200359213][bookmark: _Toc75829072][bookmark: _Toc83538935]package gov.va.med.authentication.kernel.samples;

import java.io.IOException;
import java.io.PrintWriter;

import gov.va.med.authentication.kernel.CactusFormsAuthCredentialVO;
import gov.va.med.authentication.kernel.KaajeeLoginException;
import gov.va.med.authentication.kernel.LoginController;
import gov.va.med.authentication.kernel.LoginUserInfoVO;
import junit.framework.Test;
import junit.framework.TestSuite;

import org.apache.cactus.ServletTestCase;
import org.apache.cactus.WebRequest;
import org.apache.cactus.WebResponse;
import org.apache.cactus.client.authentication.BasicAuthentication;

public class TestSampleApp extends ServletTestCase {

     /**
      * Access code, Verify code, Division to transform
      * into a valid j_username, j_password
      */
  private static final String userAccessCode = "good!@#$1";
  private static final String userVerifyCode = "good!@#$2";
  private static final String userDivision = "631";

     /**
      * To store the login credentials on the client side
      */
  private static CactusFormsAuthCredentialVO clientCredentials;
     /**
      * To store the userInfo session object on the server side
      * (problematic if multiple tests are running simultaneously)
      */
  private static LoginUserInfoVO serverUserInfo;

  public TestSampleApp(String theName) {
    super(theName);
  }

  public static Test suite() {

    TestSuite testSuite = new TestSuite(TestSampleApp.class);
    return testSuite;
  }

  /**
   * Runs on SERVER, before every test.
   */
  public void setUp() {
    // put login user info object back into session, if
    // already cached in the static class variable.
    if (serverUserInfo!= null) {
      session.setAttribute(LoginUserInfoVO.SESSION_KEY, serverUserInfo);
    }
  }

  /**
   * Runs on SERVER, after every test.
   */
  public void tearDown() {
  }

  /**
   * Runs on CLIENT. Communicates with server-side test execution via 
   * WebRequest. This test should use a _unsecured_ Cactus redirector.
   */
  public void beginGetServerCredentials(WebRequest webRequest) {
       // use unsecured test director (depends on web.xml configuration)
    webRequest.setRedirectorName("ServletRedirector");
  }

  /**
   * Runs on SERVER. Gets the j_username and j_password login
   * credentials, and returns to client by writing to the servlet output.
   */
  public void testGetServerCredentials() {
    try {
      PrintWriter out = response.getWriter();
         // call KAAJEE to get valid j_username/j_password credentials
         // based on a/v code, division
         CactusFormsAuthCredentialVO serverCredentials =
           LoginController.getFormsAuthCredentialsForCactus(
             userDivision,
             userAccessCode,
             userVerifyCode,
          session);
      // return credentials to client via servlet output
      out.println("testGetServerCredentials credentials: " +
          serverCredentials.toString());
      // get LoginUserInfoVO from session; save in static
      // class variable in server side test class (not OK
      // if multiple tests are running simultaneously)
      serverUserInfo = (LoginUserInfoVO)
          session.getAttribute(LoginUserInfoVO.SESSION_KEY);
    } catch (KaajeeLoginException e) {
      //
    } catch (IOException e) {
      //
    }
  }

  /**
   * Runs on CLIENT. Stores login credentials returned from server
   * in static class variable (client-side).
   */
  public void endGetServerCredentials(WebResponse webResponse) {
       System.out.println(webResponse.getText());
    // parse, store login credentials returned from server
    clientCredentials = new
      CactusFormsAuthCredentialVO(webResponse.getText());
  }

  /**
   * Runs on CLIENT. This test should use a _secure_ Cactus redirector,
   * using credentials gathered by earlier test run.
   */
  public void beginSecureLogin(WebRequest webRequest) {
    // use secured test director (depends on web.xml configuration)
    webRequest.setRedirectorName("ServletRedirectorSecure");
    // use credentials obtained previously to login
    webRequest.setAuthentication(
      new BasicAuthentication(clientCredentials.getJUsername(),
      clientCredentials.getJPassword()));
  }

  /**
   * Runs on SERVER.
   */
  public void testSecureLogin() {
    // test should be running in the KAAJEE-created container
    // security context of the KAAJEE-logged-in ServletRedirectSecure.
    // 
    // Now run any tests you need, in the KAAJEE
    try {
      PrintWriter out = response.getWriter();
         // display security context info
         out.println("getRemoteUser: " + request.getRemoteUser());
    } catch (IOException e) {
      //
    }
  }

  /**
   * Runs on CLIENT.
   */
  public void endSecureLogin(WebResponse webResponse) {
        System.out.println(webResponse.getText());
  }
}


[bookmark: _Toc75847096][bookmark: _Toc83538889][bookmark: _Toc84037024][bookmark: _Toc84044246][bookmark: _Toc202863144][bookmark: _Toc204421583][bookmark: _Toc167804851]Other Approaches Not Recommended

It would be possible to insert a valid j_username and j_password directly into the kaajeeweblogontoken table. Reasons not to do this include:
· The LoginUserInfoVO object will not be created.
· The proper DUZ for the given Access and Verify code is guaranteed when obtained from the LoginUserInfoVO object.
· Going through the full process of translating an Access/Verify code at runtime into a login credential assures that there are no problems (login-wise) with the M account being connected to.
· The tables are purged at every server restart, destroying the credential.
· Inserting malformed credentials into the table may cause login problems.

Another approach is to use the LoginController's getFormsAuthCredentialsForCactus method to get a valid credential once, store this credential on the client, and re-use between tests. This approach has the most of the same drawbacks as the first alternate method described above.
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This chapter describes some of the common Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE) and VistALink-related error messages that users might encounter during the Authentication and Authorization process of KAAJEE-enabled applications. For each error message listed, we include the cause and suggest possible resolutions to correct the error. All KAAJEE/VistALink error messages are displayed in an HTML format (i.e., Web page) in any of the following template files:
· loginerror.jsp
· loginerror403.jsp
· loginerrordisplay.jsp
· navigatonerrordisplay.jsp

These files are located in the following directory:
<STAGING_FOLDER>\XUS_8_695\ssowapSampleApp\login\

The following error messages are discussed in this chapter:
· Error: You are not authorized to view this page
· Error: Forms authentication login failed
· Error: You navigated inappropriately to this page
· Error: Could not get a connection from connector pool 
· Error: 
· Error: Login failed due to too many invalid signon attempts
· Error: 
· Error: 
· Error: Logins are disabled on the M system
· [bookmark: _Ref111269137]Error! Not a valid bookmark self-reference.
· Error: Institution/division you selected for login is not valid for your M user account
· [bookmark: _Ref111269164]Error! Not a valid bookmark self-reference.

	[image: Note]
	NOTE: The error messages discussed in this chapter are not listed in any particular order.




[bookmark: _Ref111268983]Error: You are not authorized to view this page

Message:
[bookmark: _Hlt200359194]

[bookmark: _Ref108600558][bookmark: _Toc202863048][bookmark: _Toc51575243][bookmark: _Toc167811486]Figure 10‑1. Error—Forbidden message: You are not authorized to view this page
You are not authorized to view this page
You might not have permission to view this directory or page using the credentials you supplied.
	
If you believe you should be able to view this directory or page, please try to contact the Website by using any e-mail address or phone number that may be listed on the localhost:8888 home page.

You can click Search to look for information on the Internet.

HTTP Error 403 – Forbidden
Internet Explorer


	Cause:
	The user attempts to access a protected resource, and instead of being prompted for their login credentials, they are immediately given a Hyper Text Transport Protocol (HTTP) Error 403 (not authorized) error (Figure 10‑1).
Some possible reasons that the authorization may have failed:
· Lack of Proper Security Keys—The end-user's account does not have the VistA M Server J2EE security keys matching the role required for this page.
· Error Retrieving User Roles—Some other error prevented proper retrieval of user roles during the login process.


	Resolution:
	For the following situations, the user must contact IRM or the System Administrator for assistance:
· Lack of Proper Security Keys—Get the necessary VistA M Server J2EE security keys assigned.
· Error Retrieving User Roles—Check the log4J logs for any errors.




[bookmark: _Hlt170807951][bookmark: _Ref111269021][bookmark: _Toc75847099]Error: Forms authentication login failed

Message:

[bookmark: _Ref108600557][bookmark: _Ref108602397][bookmark: _Toc202863049][bookmark: _Toc204421647][bookmark: _Toc51575244][bookmark: _Toc167811487]
Figure 10‑2. Error—Forms authentication login failed
Forms authentication login failed.
Try login again.
[bookmark: _Hlt200359184]
	Cause:
	The user enters their Access and Verify codes and presses the Login button. No obvious error is returned, but the user is sent to the loginerror.jsp error page (error message template) that states a generic message: "Forms authentication login failed." (Figure 10‑2).
The user was redirected by KAAJEE to the login error page. KAAJEE expects to find the loginerror.jsp in the /login folder of the application context root.
Some possible reasons that the authentication may have failed:
· WebLogic Configuration Problem—The WebLogic Custom Security Authentication Providers are not configured correctly.

	Resolution:
	For the following situations, the user must contact IRM or the System Administrator for assistance:
· WebLogic Configuration Problem—If you have Log4J configured to log the gov.va.med.authentication.kernel package for DEBUG level messages, examine the Log4J log files for output from the class UserManagerImp. If no such output is present, the WebLogic Custom Security Authentication Providers are probably not configured correctly in weblogic.xml, or the application did not deploy correctly.



[bookmark: _Hlt170807948][bookmark: _Ref170807956][bookmark: _Ref111269033][bookmark: _Toc75847100]
Error: You navigated inappropriately to this page

Message:


[bookmark: _Toc204421648][bookmark: _Toc51575245][bookmark: _Toc167811488]Figure 10‑3. Error—You navigated inappropriately to this page
You navigated inappropriately to this page.
The login process should only be invoked via the consuming application by using your original bookmark, shortcut or URL destination


	Cause:
	After successfully logging into the Web application, the user presses the browser Back button until they reach the level of the KAAJEE Web login page. This message is displayed by the navigatonerrordisplay.jsp.

	Resolution:
	Because the user is already successfully logged into the Web application, they should just press the browser Forward button to get back to the desired Web application page.




[bookmark: _Hlt170807953][bookmark: _Ref206001644]Error: Could not get a connection from connector pool

Message:
[bookmark: _Hlt200359166]
[bookmark: _Ref108602082][bookmark: _Toc202863050][bookmark: _Toc51575246][bookmark: _Toc167811489]Figure 10‑4. Error—Could not get a connection from connector pool
There was a login error detected by the login system:
            Error processing login credentials: Could not get a connection from connector pool for institution 'nnn'.

Try login again.
[bookmark: _Ref108600556]


	Cause:
	The user enters their Access and Verify codes and presses the Login button. The user is then redirected to the loginerrordisplay.jsp error page (error message template) with a descriptive error message displayed (Figure 10‑4).
In this case, the descriptive error message stated that the system could not get a connection from the connector pool for the institution selected by the user.
Several possible reasons for this failure include:
· No Institution mapping is configured to associate Station Number nnn (e.g., 662) with a JNDI name of a connector.
· No connector exists for the mapped JNDI name returned by VistALink's Institution Mapping.
· The VistA M Server to which the connector is connecting is down.

	Resolution:
	The user must contact IRM or the Systems Administrator for assistance. A review of the log files for both the application and the connector should further narrow down the exact cause of the failure.




[bookmark: _Ref111269047][bookmark: _Toc75847101]Error: Error retrieving user information

Message:
[bookmark: _Hlt200359155]

[bookmark: _Ref108601946][bookmark: _Toc202863051][bookmark: _Toc51575247][bookmark: _Toc167811490]Figure 10‑5. Error—Error retrieving user information
There was a login error detected by the login system:
            Error processing login credentials: Error retrieving user information.; Root cause exception: gov.va.med.foundations.rpc.RpcFaultException: Fault Code: 'Server'; Fault String: 'Internal Application Error'; Fault Actor: 'XUS KAAJEE GET USER INFO'; Code: '182301'; Type: 'XUS KAAJEE GET USER INFO'; Message: 'No valid DUZ found. [Security Type: AV][Access code does not match a NP entry.''

Try login again.



	Cause:
	The user enters their Access and Verify codes and presses the Login button. The user is then redirected to the loginerrordisplay.jsp error page (error message template) with a descriptive error message displayed (Figure 10‑5).
In this case, the descriptive error message stated that the system could not find a valid DUZ for the user. The Access code entered by the user was not found in the NEW PERSON file (#200).


	Resolution:
	The user must contact IRM or the Systems Administrator to verify that the user is allowed access to the VistA M Server account in question and then grant the user appropriate access.




[bookmark: _Ref111269059]Error: User provisioning information is not available

Message:


[bookmark: _Ref111256294][bookmark: _Toc202863052][bookmark: _Toc51575248][bookmark: _Toc167811491]Figure 10‑6. Error—“VistA
[bookmark: _Hlt200359146][image: Error—“VistA]

	Cause:
	The user arrives at the application’s login page and gets presented the “VistAIDError” control. 



	Resolution:
	The user must exercise the Link My Account functionality in order to get granted appropriate orivusuing information from the IAM/STS services..




[bookmark: _Ref111269077]Error: Login failed due to too many invalid signon attempts

Message:
[bookmark: _Hlt200359136]

[bookmark: _Ref111258342][bookmark: _Toc202863053][bookmark: _Toc51575249][bookmark: _Toc167811492]Figure 10‑7. Error—Login failed due to too many invalid logon attempts
There was a login error detected by the login system:
Error processing login credentials :: Could not get a connection from connector pool for institution '442'.; Root cause exception: gov.va.med.vistalink.adapter.cci.VistaLinkResourceException: Could not perform Logon; Root cause exception: gov.va.med.vistalink.security.m.SecurityTooManyInvalidLoginAttemptsFaultException: Fault Code: 'Server'; Fault String: 'Logon Failed'; Fault Actor: ''; Code: '183005'; Type: ''; Message: 'Logon failure: 'Device/IP address is locked due to too many invalid signon attempts.''
Try login again.





	Cause:
	The user picks an institution and presses the Proceed button. The user is then redirected to the loginerrordisplay.jsp error page (error message template) with a descriptive error message displayed (Figure 10‑7).
The underlying Connector Proxy account’s Verify code is most likely expired, which has exceeded the allowed number of login attempts to the VistA M Server.

	Resolution:
	The user must contact IRM or the System Administrator for assistance.




[bookmark: _Ref111269095]Error: Certificate expired

Message:


[bookmark: _Ref111258407][bookmark: _Toc202863054][bookmark: _Toc51575250][bookmark: _Toc167811493]Figure 10‑8. Error—Your 2-way auth SSL certificate has expired
[bookmark: _Hlt200359123][image: Error—Your 2-way auth SSL certificate has expired]


	Cause:
	The user enters picks a station number from the drop-down list and presses the Proceed button. The user is then redirected to the loginerrordisplay.jsp error page (error message template) with a descriptive error message displayed (Figure 10‑8).
Several possible reasons for this failure include:
· The certificate on the WebLogic side has expired.
· One of the intermediary, root chain certificates has expired.


	Resolution:
	Update the certificate on the application server side and communicate securely to the STS team.




[bookmark: _Ref111269110]Error: Unable to sign on, “Try using your Access/Verify code” error

Message:
[bookmark: _Hlt200359113]

[bookmark: _Ref111258436][bookmark: _Toc202863055][bookmark: _Toc51575251][bookmark: _Toc167811494]Figure 10‑9. Error— Unable to sign on using Identity and Access Management STS token. Try using your Access/Verify codes:
There was a login error detected by the login system:
            Unable to sign on using Identity and Access Management STS token. Try using your Access/Verify codes.

Try login again.



	Cause:
	The user selectes an institution and presses the Proceed button. The user is then redirected to the loginerrordisplay.jsp error page (error message template) with a descriptive error message displayed (Figure 10‑9).
Several possible reasons for this failure include:
· The SecID values in VistA and STS provisioning down’t match
· Timezone difference (mismatch between the certificate issuing authority and the VistA).
· The user is not allowed access to the VistA M Server in question.
· The user was not set up correctly on the VistA M Server in question.
For security reasons, the system does not specify the exact reason for an error.


	Resolution:
	The user should open a ticket with the IAM in reagrds to the Link My Account functionality for the production environments or inspect/confirm the values on the STS and VistA side for the lower environments.
If the error persists, the user must contact IRM or the System Administrator to verify that the user is allowed access to the VistA M Server account in question, inspect the presense and value of a SecID field and then grant the user appropriate access.




[bookmark: _Ref111269124]Error: Logins are disabled on the M system

Message:
[bookmark: _Hlt200359103]

[bookmark: _Ref111260439][bookmark: _Toc202863056][bookmark: _Toc51575252][bookmark: _Toc167811495]Figure 10‑10.  Error—Logins are disabled on the M system
There was a login error detected by the login system:
            Logins are disabled on the M system.

Try login again.



	Cause:
	The user picks the station from the drop-down list and presses the Proceed button. The user is then redirected to the loginerrordisplay.jsp error page (error message template) with a descriptive error message displayed (Figure 10‑10).
IRM or the System Administrator has disabled logins on the VistA M Server. Logins are sometimes disabled in order to install new software or perform system maintenance.


	Resolution:
	The user should wait and try to log into the VistA M Server at a later time. If the user feels the time period to log back into the system is excessive, the user should contact IRM or the System Administrator for assistance.






[bookmark: _Ref111269150]Error: Institution/division you selected for login is not valid for your M user account

Message:
[bookmark: _Hlt200359079]

[bookmark: _Ref111261638][bookmark: _Toc202863058][bookmark: _Toc51575253][bookmark: _Toc167811496]Figure 10‑11. Error—Institution/division you selected for login is not valid for your M user account
There was a login error detected by the login system:
            Institution/division you selected for login is not valid for your M user account; could not log you
            on.
            Please contact your site manager for assistance.
            More details below:

Try login again.



	Cause:
	The user selects and institution and presses the Proceed button. The user is then redirected to the loginerrordisplay.jsp error page (error message template) with a descriptive error message displayed (Figure 10‑11).
Several possible reasons for this failure include:
· The user does not have the selected Institution/Division entry in the DIVISION Multiple field (#16) in the NEW PERSON file (#200) entry.
· The SDS tables could not validate the Division selected.

	Resolution:
	The user must contact IRM or the System Administrator to verify that the user is allowed access to the Institution/Division in question and then grant the user appropriate access.





	[image: Note]
	REF: For a list of other login-related error messages, please refer to the "Symptoms and Possible Solutions" topic in the VistALink System Administration Guide.



	[image: Note]
	REF: For more information on the Kernel signon process and related error messages, please refer to the "Signon/Security" section in the Kernel Systems Management Guide.
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Term				Definition	
	AA
	Authentication and Authorization

	AAC
	Formerly the Austin Automation Center. Renamed to the Austin Information Technology Center (AITC)

	AAIP
	Authentication and Authorization Infrastructure Program (terminated, see PIV or refer to OCIS)
The Office of Human Resources and Administration is currently managing the Personal Identity Verification (PIV) project with the assistance of the Office of Security and Law Enforcement and the Office of Cyber and Information Security (OCIS). This program replaces the Authentication and Authorization Infrastructure Project (AAIP) that OCIS formally managed and has since terminated. VA will issue a Directive that will mandate use of the FIPS 201 processes and preparing a series of Handbooks (Identity Proofing, Issuance, and Privacy) to describe specific implementation roles, responsibilities, and processes as defined in FIPS 201. The PIV Program Office is working with the three Administrations to ensure all business, systems and policy requirements are adequately addressed and making a concerted effort to coordinate an enterprise-wide approach for identity and access management. Of specific interest is the need to coordinate the various requirements for identity and access management.

	Access Code
	A password used by the Kernel system to identify the user. It is used with the verify code. 

	Adapter 
	Another term for resource adapter or connector.

	Administration Server
	Each WebLogic server domain must have one server instance that acts as the administration server. This server is used to configure all other server instances in the domain.

	AITC
	Austin Information Technology Center

	Alias
	An alternative filename. 

	Alpha/VMS
	Alpha: Hewlett Packard computer system
VMS: Virtual Memory System

	Anonymous Software Directories  
	M directories where VHA application and patch zip files are placed for distribution. 

	API
	Application Program Interface

	Application Proxy User
	A Kernel user account designed for use by an application rather than an end-user.

	Application Server
	Software/hardware for handling complex interactions between users, business logic, and databases in transaction-based, multi-tier applications. Application servers, also known as app servers, provide increased availability and higher performance.

	ASTM
	American Society for Testing and Materials

	Authentication
	Verifying the identity of the end-user.

	Authorization
	Granting or denying user access or permission to perform a function.

	Base Adapter
	Version 8.1 of WebLogic introduced a "link-ref" mechanism enabling the resources of a single "base" adapter to be shared by one or more "linked" adapters. The base adapter is a standalone adapter that is completely set up. Its resources (classes, jars, etc.) can be linked to and reused by other resource adapters (linked adapters). The deployer only needs to modify a subset of the linked adapters’ deployment descriptor settings. Note: This mechanism is no longer supported in WebLogic 9 and later for J2CA 1.5 adapters (e.g., VistALink 1.6).

	Caché
	Caché is an M environment, a product of InterSystems Corp.

	Cache/VMS
	Cache: InterSystems Caché object database that runs SQL
VMS: Virtual Memory System

	CCI
	Common Client Interface

	CCOW
	A standard defining the use of a technique called "context management," providing the clinician with a unified view on information held in separate and disparate healthcare applications that refer to the same patient, encounter or user. 
Formerly Clinical Context Object Workgroup, now known as the CCOW Technical Committee. CCOW is an end-user-focused standard that complements HL7's traditional emphasis on data interchange and enterprise workflow. Using a technique known as context management, the clinical user's experience is one of interacting with a single system, when in fact he or she may be using multiple, independent applications from many different systems, each via its native user interface. By synchronizing and coordinating applications so that they automatically follow the user's context, the CCOW Standard serves as the basis for ensuring secure and consistent access to patient information from heterogeneous sources. The benefits include applications that are easier to use, increased utilization of electronically available information, and an increase in patient safety. Further, CCOW support for secure context management provides a healthcare standards basis for addressing HIPAA requirements. For example, CCOW enables the deployment of highly secure single sign-on solutions.

	Classpath
	The path searched by the JVM for class definitions. The class path may be set by a command-line argument to the JVM or via an environment variable.

	Client
	Can refer to both the client workstation and the client portion of the program running on the workstation. 

	Connection Factory
	A J2CA class for creating connections on request. 

	Connection Pool
	A cached store of connection objects that can be available on demand and reused, increasing performance and scalability. VistALink uses connection pooling when running on a J2EE server. 

	Connector 
	A system-level driver that integrates J2EE application servers with Enterprise Information Systems (EIS). VistALink is a J2EE connector module designed to connect to Java applications with VistA/M systems. The term is used interchangeably with connector module, adapter, adapter module, and resource adapter.

	Connector Proxy User
	For security purposes, each instance of a J2EE connector must be granted access to the M server it connects to. This is done via a Kernel user account set up on the M system. This provides initial authentication for the app server and establishes a trusted connection. The M system manager must set up the connector user account and communicate the access code, verify code and listener IP address and port to the J2EE system manager. 

	COTS
	Commercial, Off-The-Shelf

	CPRS
	Computerized Patient Record System

	CSV
	Comma-Separated Values format  

	DBF
	Database file format underlying many database applications (originally dBase)

	DBMS
	Database Management System

	DCL
	Digital Command Language. An interactive command and scripting language for VMS.

	Division
	Division is an Institution in the INSTITUTION file (#4) that is identified via a unique Station Number. Divisions are "sub"-divisions or child sites within an integrated set of facilities, whose computing is hosted on the computer system of the primary facility. The parent-child relationship between a division and a primary facility is maintained by the ASSOCIATIONS multiple field (#14) in the INSTITUTION file (#4). A sub-division may be a medical center, clinic, or nursing home. The primary facility is also a division of itself. Clinics and nursing homes are often sub-divisions. The Station Number for child sites is 5 characters, the first 3 of which are the 3 numbers of the parent facility. For example, Livermore, CA is a medical center that is a child of Palo Alto, CA. Its Station Number is 640A4.

	DSM
	Digital Standard MUMPS. An M environment, a product of InterSystems Corp. 

	DUZ
	A local variable holding a number that identifies the signed-on user. The number is the Internal Entry Number (IEN) of the user’s record in the NEW PERSON file (file #200)

	EAR (file)
	Enterprise ARchive file (.ear extension). This file has the same format as a regular .jar file. An ear file is like a zip file packaged for J2EE application deployment. The .ear file contains everything necessary to deploy an enterprise application on an application server. An ear file can contain 1-n Web modules. It contains at least one .war (Web Archive) file which contains the Web component of the application as well as the .jar (Java Archive) file. In addition, there are some deployment descriptor files in XML.[footnoteRef:9]  [9:  Derived from a question (What's an .ear file) posed by John Zukowski and defined by Mobushir Hingorjo on 3/6/00 (modified 8/4/00) and available on the following Web page: http://www.jguru.com/faq/view.jsp?EID=21097.] 


	EIS
	Enterprise Information System

	EJB
	Enterprise JavaBeans. Enterprise JavaBeans (EJB) technology is the server-side component architecture for the Java 2 Platform, Enterprise Edition (J2EE) platform. EJB technology enables rapid and simplified development of distributed, transactional, secure and portable applications based on Java technology.[footnoteRef:10] [10:  Definition from the following  Sun Microsystems WebWeb site: http://java.sun.com/products/ejb/.] 


	EPHI
	The HealtheVet-VistA architecture is a services-based architecture. Applications are constructed in tiers with distinct user interface, middle, and data tiers. Two types of services will exist:
Core Services—Infrastructure and data.
Application Services—A single logical authoritative source of data.Electronic Protected Health Information

	FatKAAT
	Fat-Client (i.e. Rich client) Kernel Authentication and Authorization

	FDA
	FileMan Data Array

	File #18
	System file #18 was the precursor to the KERNEL SYSTEMS PARAMETERS file, and is now obsolete. It uses the same number space that is now assigned to VistALink. Therefore, file #18 must be deleted before VistALink can be installed. 

	Global
	A multi-dimensional data storage structure -- the mechanism for  persistent data storage in a MUMPS database.

	Healthevet-VistA
	The HealtheVet-VistA architecture is a services-based architecture. Applications are constructed in tiers with distinct user interface, middle, and data tiers. Two types of services will exist:
· Core Services—Infrastructure and data.
· Application Services—A single logical authoritative source of data.

	HIPAA
	Health Insurance Portability and Accountability Act

	HL7
	Health Level 7

	HTTP
	HyperText Transport Protocol

	HTTP Session Object
	Hyper Text Transport Protocol (HTTP) Session Objects are used like cookies to maintain states as Web pages are considered stateless rather than stateful.

	IDE
	Integrated development environment. A suite of software tools to support writing software. 

	Institution
	A Department of Veterans Affairs (VA) facility assigned a number by headquarters, as defined by Directive 97-058. An entry in the INSTITUTION file (#4)  that represents the Veterans Health Administration (VHA). There are a wide variety of facility types in the INSTITUTION file, including medical centers, clinics, domiciliaries, administrative centers, Veterans Integrated Service Networks (VISNs), and so forth.

	Institution Mapping
	The VistALink 1.6 release includes a small utility that administrators can use to associate station numbers with JNDI names, and which allows runtime code to retrieve the a VistALink connection factory based on station number.

	IP
	Internet Protocol

	ISO
	Information Security Officer

	J2CA
	J2EE Connector Architecture. J2CA is a framework for integrating J2EE-compliant application servers with Enterprise Information Systems, such as the VHA’s VistA/M systems. It is the framework for J2EE connector modules that plug into J2EE application servers, such as the VistALink adapter.

	J2EE
	The Java 2 Platform, Enterprise Edition (J2EE) is an environment for developing and deploying enterprise applications. The J2EE platform consists of a set of services, APIs, and protocols that provide the functionality for developing multi-tiered, Web-based applications. A J2EE Connector Architecture specification for building adapters to connect J2EE systems to non-J2EE enterprise information systems.

	J2SE
	Java 2 Standard Edition. Sun Microsystem’s programming platform based on the Java programming language. It is the blueprint for building Java applications, and includes the Java Development Kit (JDK) and Java Runtime Environment (JRE).

	JAAS
	Java Authentication and Authorization Service. JAAS is a pluggable Java framework for user authentication and authorization, enabling services to authenticate and enforce access controls upon users. 

	JAR  file
	Java archive file. It is a file format based on the ZIP file format, used to aggregate many files into one. 

	JAVA
	Java is a programming language. It can be used to complete applications that may run on a single computer or be distributed among servers and clients in a network.

	Java Library
	A library of Java classes usually distributed in JAR format.

	JavaBeans
	JavaBeans expose methods, properties, and events, which can then be accessed by other components or scripts. JavaBeans are commonly mistaken for design patterns as they both use similar conventions (e.g., both use Setter and Getter methods). A JavaBean is a reusable component that can be used in any Java application development environment. JavaBeans are dropped into an application container, such as a form, and can perform functions ranging from a simple animation to complex calculations.[footnoteRef:11] [11:  Definition of JavaBean from the following Glossary Web site: http://www.orafaq.com/glossary/faqglosj.htm, 7/17/04, Revision 2.1;  Author: Frank Naudé.] 


	Javadoc
	Javadoc is a tool for generating API documentation in HTML format from doc comments in source code. Documentation produced with this tool is typically called Javadoc.

	JBoss
	JBoss is a free software / open source Java EE-based application server.

	JCA CCI
	J2EE Connector Architecture Common Client Interface

	JDBC
	Java Database Connector. JDBC technology is an API (included in both J2SE and J2EE releases) that provides cross-DBMS connectivity to a wide range of SQL databases and access to other tabular data sources, such as spreadsheets or flat files. With a JDBC technology-enabled driver, you can connect all corporate data even in a heterogeneous environment.[footnoteRef:12] [12:  Definition from the following  Sun Microsystems WebWeb site: http://java.sun.com/products/jdbc/.] 


	JDK
	Java Development Kit. A set of programming tools for developing Java applications.

	JMX
	Java Management eXtensions. A java specification for building manageability into java applications, including J2EE-based ones.

	JNDI
	Java Naming and Directory Interface. A protocol to a set of APIs for multiple naming and directory services.

	JRE
	The Java Runtime Environment consists of the Java virtual machine, the Java platform core classes, and supporting files. JRE is bundled with the JDK but also available packaged separately.

	JSP
	Java Server Pages. A language for building web interfaces for interacting with web applications. 

	JSP
	Java Server Pages.

	JVM
	Java Virtual Machine. The JVM interprets compiled Java binary code (byte code) for specific computer hardware.

	KAAJEE
	Kernel Authentication and Authorization for Java 2 Enterprise Edition

	KaajeeVistaLinkConnection
Spec
	KAAJEE currently maintains this VistALink class and uses it to connect to the VistA M Server. This class extends VistaLinkConnectionSpecImpl. In other words, it inherits from the VistALink class VistaLinkConnectionSpecImpl. KAAJEE has added additional code in order to handle the IP address.
[image: Note] NOTE: In the future, VistALink may incorporate and maintain this code.

	KERNEL
	A facility is multidivisional if it supports one or more divisions. HealtheVet-VistA applications are required to be multidivisional-aware. Thus, it must be designed to work correctly at a multi-divisional facility.Set of VistA software routines that function as an intermediary between the host operating system and the VistA application packages such as Laboratory, Pharmacy, IFCAP, etc. The Kernel provides a standard and consistent user and programmer interface between application packages and the underlying M implementation.

	KIDS
	Oracle 9i (or higher version) is a relational database that supports the Structured Query Language (SQL), now an industry standard. Currently, it is used to store the KAAJEE SSPIs.Kernel Installation and Distribution System. The VistA/M module for exporting new VistA software packages.

	LDAP
	Acronym for Lightweight Directory Access Protocol. LDAP is an open protocol that permits applications running on various platforms to access information from directories hosted by any type of server.  

	Linked Adapter
	Version 8.1 of WebLogic introduced a "link-ref" mechanism enabling the resources of a single "base" adapter to be shared by one or more "linked" adapters. The base adapter is a standalone adapter that is completely set up. Its resources (classes, jars, etc.) can be linked to and reused by other resource adapters (linked adapters). The deployer only needs to modify a subset of linked adapters’ deployment descriptor settings. Note: This mechanism is no longer supported in WebLogic 9 and later for J2CA 1.5 adapters (e.g., VistALink 1.6).

	Linux
	An open-source operating system that runs on various types of hardware platforms. HealtheVet-VistA servers use both Linux and Windows operating systems. 

	Listener
	A socket routine that runs continuously at a specified port to field incoming requests. It sends requests to a front controller for processing. The controller returns its response to the client through the same port. The listener creates a separate thread for each request, so it can accept and forward requests from multiple clients concurrently.

	log4J Utility
	An open-source logging package distributed under the Apache Software license. Reviewing log files produced at runtime can be helpful in debugging and troubleshooting. 

	logger
	In log4j, a logger is a named entry in a hierarchy of loggers. The names in the hierarchy typically follow Java package naming conventions. Application code can select a particular logger by name to write output to, and administrators can configure where a particular named logger’s output is sent.

	M (MUMPS)
	Massachusetts General Hospital Utility Multi-programming System, abbreviated M. M is a high-level procedural programming computer language, especially helpful for manipulating textual data.

	Managed Server
	A server instance in a WebLogic domain that is not an administration server, i.e., not used to configure all other server instances in the domain.

	MBeans
	In the Java programming language, an MBean (managed bean) is a Java object that represents a manageable resource, such as an application, a service, a component, or a device. MBeans must be concrete Java classes.

	Messaging
	A framework for one application to asynchronously deliver data to another application, typically using a queuing mechanism.

	Multidivisional
	A facility is multidivisional if it supports one or more divisions. HealtheVet-VistA applications are required to be multidivisional-aware. Thus, it must be designed to work correctly at a multi-divisional facility.

	Multiple
	A VA FileMan data type that allows more than one value for a single entry. 

	Namespace 
	A unique 2-4 character prefix for each VistA package. The DBA assigns this character string for developers to use in naming a package’s routines, options, and other elements. The namespace includes a number space, a pre-defined range of numbers that package files must stay within. 

	NEW PERSON (#200) FILE
	A VistA file that contains data on employees, users, practitioners, etc. of the VA.

	NIST
	National Institute for Standards and Technology

	OCIS
	Office of Cyber and Information Security

	OI
	Office of Information

	OI&T
	Office of Information & Technology

	ORACLE 10g
	Oracle is a relational database that supports the Structured Query Language (SQL), now an industry standard.

	OS
	Operating System

	OS&LE
	Office of Security and Law Enforcement

	Patch
	An update to a VistA software package that contains an enhancement or bug fix. Patches can include code updates, documentation updates, and information updates. Patches are applied to the programs on M systems by IRM services.

	PHI
	Protected Health Information

	PIV
	Personal Identity Verification

	Primary Facility
	Primary facilities, also called Parent Facilities, are always medical centers, and they have a three-digit Station Number. A primary facility may be a standalone medical center, or it may be the parent facility of an integrated set of facilities, often called a healthcare network. For example, Palo Alto, CA is the headquarters of the Palo Alto Healthcare Network (HCN). Its Station Number is 640. An integrated set of facilities always falls within the boundary of a VISN.

	Production
	A system on which some production (i.e., "live" data) is stored, accessed, and/or updated.

	ra.xml 
	ra.xml is the standard J2EE deployment descriptor for J2CA connectors. It describes connector-related attributes and its deployment properties using a standard DTD (Document Type Definition) from Sun. 

	Re-authentication
	When using a J2CA connector, the process of switching the security context of the connector from the original application connector "user" to the actual end-user. This is done by the calling application supplying a proper set of user credentials.

	Resource Adapter
	J2EE resource adapter modules are system-level drivers that integrate J2EE application servers with Enterprise Information Systems (EIS). This term is used interchangeably with resource adapter and connector.

	RM
	Requirements Management

	Routine
	A program or sequence of computer instructions that may have some general or frequent use. M routines are groups of program lines that are saved, loaded, and called as a single unit with a specific name.

	RPC
	Remote Procedure Call. A defined call to M code that runs on an M server. A client application, through the RPC Broker, can make a call to the M server and execute an RPC on the M server. Through this mechanism a client application can send data to an M server, execute code on an M server, or retrieve data from an M server

	RPC Broker
	The RPC Broker is a client/server system within VistA. It establishes a common and consistent framework for client-server applications to communicate and exchange data with VistA/M servers.

	RPC Security
	All RPCs are secured with an RPC context (a "B"-type option). An end-user executing an RPC must have the "B"-type option associated with the RPC in the user’s menu tree. Otherwise an exception is thrown. 

	S&OCS
	Security & Other Common Services

	SAD
	[bookmark: OLE_LINK1]Software Architecture Document

	SDD
	Software Design Document

	SE&I
	Software Engineering & Integration

	Servlet
	A Java program that resides on a server and executes requests from client web pages. 

	Singleton
	"An object that cannot be instantiated. A singleton can be created, but it can't be instantiated by developers—meaning that the singleton class has control over how it is created. The restriction on the singleton is that there can be only one instance of a singleton created by the Java Virtual Machine (JVM)."[footnoteRef:13] [13:  Definition taken from the "Java Coffee Break" Web site: http://www.javacoffeebreak.com/articles/designpatterns/] 


	Socket
	An operating system object that connects application requests to network protocols. 

	SPI
	J2CA service provider interface  Service-Level Contract

	SRS
	Software Requirements Specification

	SSL
	Secure Socket Layer. A low-level protocol that enables secure communications between a server and a browser. It provides communication privacy.

	SSO/UC
	Single Sign-On/User Context 

	SSPI
	Security Service Provider Interface

	STATION NUMBER
	A Station Number uniquely identifies every VA primary facility and division; however, entries for some facility types do not have Station Numbers. Station Numbers are stored in Field #99 in the VistA M Server INSTITUTION file (#4).

	TCP/IP
	Transmission Control Protocol (TCP) and the Internet Protocol (IP)

	Term
	Definition

	TEST
	A system on which no production (i.e., "live" data) is stored, accessed, and/or updated.

	TREEMAPS
	TreeMaps are like name/value pairs. They are sorted by the keys. There are other types of maps as well (e.g., map, hashmap, hashtable, collection, etc.). TreeMaps have a Put and a Get method; therefore, you can use the Put method and pass in a key and an object. An object can be like any object (e.g., value object).

	TRM
	The Technical Reference Model

	TXT
	Text file format 

	UI
	User Interface

	UML
	Unified Modeling Language is a standardized specification language for object modeling.

	URL
	Uniform Resource Locator

	User Provisioning
	User account management—Create, modify, and delete user accounts and privileges (e.g., definition by roles and rules) for access to computer system resources. Enterprises typically use user provisioning to manage internal user access.[footnoteRef:14] [14:  Definition taken from the following Web site: http://www.biu.ac.il/Computing/security/glossary%20of%20useful%20terms.htm (based on www. Gartner.com)] 


	VA
	Department of Veterans Affairs

	VACO
	Veterans Affairs Central Office

	Value Object
	Value Objects (VO) allow programs to store values for different elements where they can be extracted later using a method. They follow certain design patterns.

	Verify Code
	A password used in tandem with the access code to provide secure user access. The Kernel’s Sign-on/Security system uses the verify code to validate the user's identity.

	VHA
	Veterans Health Administration

	VISN
	Veterans Integrated Service Network(s)

	VistA
	Veterans Health Information Systems and Technology Architecture. The VHA’s portfolio of M-based application software used by all VA medical centers and associated facilities.

	VistALink (VL)
	VistaLink is a runtime and development tool providing connection and data conversion between Java and M applications in client-server and n-tier architectures, to which this document describes the architecture and design.

	VistALink Libraries
	Classes written specifically for VistALink.

	VMS
	Virtual Memory System. An operating system, originally designed by DEC (now owned by Hewlett-Packard), that operates on the VAX and Alpha architectures. 

	VPFS
	Veterans Personal Finance System. The re-hosted Integrated Patient Funds (IPF) software (a.k.a. Personal Funds of Patients [PFOP]) that is written in J2EE and planned to run on a centralized system. A Web browser front-end will be used for the user interface.

	VPID
	VA Person Identifier. A new enterprise-level identifier uniquely identifying VA ‘persons’ across the entire VA domain.

	WAR (file)
	Web ARchive file (.war extension). Web Modules are packaged in .war files. A war file does not need to contain jsps and/or html content. A war file can be deployed by itself.

	WebLogic
	WebLogic is a J2EE Platform application server.

	WebSphere
	WebSphere Application Server (WAS) is and IBM application server.

	WLU
	WebLogic Server Upgrade project

	XLS
	Microsoft Office XL worksheet and workbook file format

	XML
	Extensible Markup Language

	XmlBeans
	XMLBeans is a Java-to-XML binding framework which is part of the Apache Software Foundation XML project.

	XOB Namespace
	The VistALink namespace. All VistALink programs and their elements begin with the characters "XOB."




	[bookmark: OLE_LINK18][bookmark: OLE_LINK19][image: Note]
	REF: For a comprehensive list of commonly used infrastructure- and security-related terms and definitions, please visit the Glossary Web page at the following Web address:
http://vaww.vista.med.va.gov/iss/glossary.asp
For a comprehensive list of acronyms, please visit the Acronyms Web site at the following Web address:
http://vaww.vista.med.va.gov/iss/acronyms/index.asp
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Appendix A—Sample Deployment Descriptors


	[image: Note]
	REF: For a sample of the kaajeeConfig.xml file, please refer to Figure 5‑2 in chapter 6, "KAAJEE SSOWAP Configuration File," in this manual.




[bookmark: _Toc75847105][bookmark: _Toc76201445][bookmark: _Toc75847103][bookmark: _Toc76201443]application.xml


[bookmark: _Toc167811497]Figure A-1. Sample KAAJEE Deployment Descriptor: application.xml file (e.g., KAAJEE sample application)
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">
<application>
    <display-name>ssowapSampleEar</display-name>
    <module>
        <web>
            <web-uri> ssowap-8.0.791.war</web-uri>
            <context-root>/ssowapSampleApp</context-root>
        </web>
    </module>
</application>


Application developers would customize this sample descriptor for their use by replacing the following information with information specific to their application:
· <display-name> Tag—Replace "KaajeeSampleEar" ear file name with the name of your application ear file.
· <web-uri> Tag—Replace "kaajeeSampleApp.war" war file name with the name of your application war file.
· <context-root> Tag—Replace "/kaajeeSampleApp" root directory with the name of your application root directory.


[bookmark: _Toc75847104][bookmark: _Toc76201444]web.xml


[bookmark: figure_a_4][bookmark: _Toc75829078][bookmark: _Toc83538941][bookmark: _Toc202863061][bookmark: _Toc167811498]Figure A-2. Sample KAAJEE Deployment Descriptor: web.xml file (e.g., PATS application)
[bookmark: _Hlt170632610][bookmark: _Hlt170632629][bookmark: _Hlt200359036]<?xml version='1.0' encoding='UTF-8'?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://java.sun.com/xml/ns/javaee 
          http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
    version="2.5">

  <listener>
    <listener-class>
      gov.va.med.authentication.kernel.ssowap.KaajeeSessionAttributeListener
    </listener-class>
  </listener>
  
  <listener>
    <listener-class>
      gov.va.med.authentication.kernel.ssowap.KaajeeHttpSessionListener
    </listener-class>
  </listener>

  <servlet>
    <servlet-name>SampleAppInit</servlet-name>
    <servlet-class>gov.va.med.authentication.kernel.ssowap.samples.InitSampleAppServlet</servlet-class> 
    <load-on-startup>1</load-on-startup>
  </servlet>  

   <servlet>
    <servlet-name>KaajeeInit</servlet-name>
    <servlet-class>gov.va.med.authentication.kernel.ssowap.InitKaajeeServlet</servlet-class>
    <init-param>
      <param-name>kaajee-config-file-location</param-name>
      <param-value>/WEB-INF/kaajeeConfig.xml</param-value>
    </init-param>
    <load-on-startup>3</load-on-startup>
  </servlet>  

  <servlet>
    <servlet-name>LoginController</servlet-name>
    <servlet-class>gov.va.med.authentication.kernel.ssowap.LoginController</servlet-class>
    <init-param>
      <param-name>debugFlag</param-name>
      <param-value>True</param-value>
    </init-param>
    <run-as>
      <role-name>adminuserrole</role-name>
    </run-as>
  </servlet>
  
  <servlet-mapping>
    <servlet-name>LoginController</servlet-name>
    <url-pattern>/LoginController</url-pattern>
  </servlet-mapping>

  <session-config>
    <session-timeout>7</session-timeout>
  </session-config>
  
  <error-page>
    <error-code>403</error-code>
    <location>/login/loginerror403.jsp</location>
  </error-page>

  <error-page>
    <error-code>404</error-code>
    <location>/AppErrorPage.jsp</location>
  </error-page>

   <security-constraint>
    <web-resource-collection>
      <web-resource-name>SSOWAP Login Page</web-resource-name>
      <url-pattern>/login/*</url-pattern>
      <http-method>GET</http-method>
      <http-method>POST</http-method>
      </web-resource-collection>
      <user-data-constraint>
        <!-- For the KAAJEE Login Page, use 'CONFIDENTIAL' when possible. -->
        <transport-guarantee>NONE</transport-guarantee>
      </user-data-constraint>
  </security-constraint>

   <security-constraint>
    <web-resource-collection>
      <web-resource-name>A Protected Page</web-resource-name>
      <url-pattern>/AppHelloWorld.jsp</url-pattern>
      <http-method>GET</http-method>
      <http-method>POST</http-method>
      </web-resource-collection>
      <auth-constraint>
        <role-name>SSOWAP_APP_ROLE</role-name>
      </auth-constraint>
      <user-data-constraint>
        <!--  Use a value of 'CONFIDENTIAL' to place this page in SSL. -->
        <transport-guarantee>NONE</transport-guarantee>
      </user-data-constraint>
  </security-constraint>

   <login-config>
   <auth-method>FORM</auth-method>
    <form-login-config>
      <form-login-page>/login/login.jsp</form-login-page>
      <form-error-page>/login/loginerror.jsp</form-error-page>
    </form-login-config>
   </login-config> 
    
  <security-role>
    <description>Required Role for the ssowap to function</description>
     <role-name>adminuserrole</role-name>
  </security-role>  
  
  <security-role>
    <description>Application Role (VistA Key) protecting intra-application resources</description>
    <role-name>SSOWAP_APP_ROLE</role-name>
  </security-role>
   <!-- Application welcome file list -->
	<welcome-file-list>
	  <welcome-file>/AppHelloWorld.jsp</welcome-file>
	</welcome-file-list>
</web-app>


Application developers would customize this sample descriptor for their use by adding in their application servlets and by replacing the following information with information specific to their application:
· <security-constraint> Tag (multiple):
· <url-pattern> Tag—Replace "/AppHelloWorld.jsp" security constraint URL with your application's security constraint URL.
· <role-name> Tag—Replace "XUKAAJEE_SAMPLE_ROLE" security constraint role name with your application's security constraint role name.
· <user-data-constraint>
      <transport-guarantee> Tag—Replace "NONE" with "CONFIDENTIAL" to put your page in SSL.

	[image: Note]
	NOTE: For the KAAJEE Login Page, use 'CONFIDENTIAL' when possible.


· <security-role> Tag (multiple):
· <description> Tag—Replace/add all security role descriptions (e.g., "KERNEL KAAJEE Sample role") with your application's security role descriptions.
· <role-name> Tag—Replace/add all security role names (e.g., "XUKAAJEE_SAMPLE_ROLE") with your application's security role names.



[bookmark: _Toc75847106][bookmark: _Toc76201446]weblogic.xml


The BEA weblogic.xml file is used to map security role names (i.e., <security-role> element entries in the web.xml file) to users and/or groups (i.e., principals); KAAJEE only uses groups. The WebLogic Application Server will only allow mapped security roles access to protected URL resources.

	[image: Note]
	REF: For a sample spreadsheet showing a mapping between WebLogic group names (i.e., principals) with J2EE security role names, please refer to "Appendix B—Mapping WebLogic Group Names with J2EE Security Role Names" in this manual.




[bookmark: _Toc167811499]Figure A-3. Sample KAAJEE Deployment Descriptor: weblogic.xml file (e.g., KAAJEE Sample Web Application)
[bookmark: _Hlt200359011]<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/10" xmlns:wls="http://www.bea.com/ns/weblogic/10" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd http://www.bea.com/ns/weblogic/10 http://www.bea.com/ns/weblogic/103/weblogic-web-app.xsd">
<run-as-role-assignment>
  <role-name>adminuserrole</role-name>
  <run-as-principal-name>SSOWAP_USER</run-as-principal-name>
</run-as-role-assignment>

<security-role-assignment>
  <role-name>XUKAAJEE_SAMPLE_ROLE</role-name>
  <principal-name>XUKAAJEE_SAMPLE</principal-name>
</security-role-assignment>

<session-descriptor>
  <cookie-name>ssowapJSESSIONID</cookie-name>
</session-descriptor>
<context-root>swap</context-root>
</weblogic-web-app>


Application developers would customize this sample descriptor for their use by replacing the following information with information specific to their application:
· <security-role-assignment> Tag:
· <role-name> Tag—Replace "XUKAAJEE_SAMPLE_ROLE" security role assignment role name with your application's security role assignment role name.
· <principal-name> Tag—Replace "XUKAAJEE_SAMPLE" security role assignment principal name with your application's security role assignment principal name.
· <session-param> Tag:
· <param-value> Tag—Replace "ssowapJSESSIONID" security param value with your application's param value.

	[image: Note]
	NOTE: Creating the weblogic.xml deployment descriptor is optional. If you do not include this file, or include the file but do not include mappings for all security roles, all security roles without mappings will default to any user or group whose name matches the role name.[footnoteRef:15] [15:  Excerpt taken from the WebLogic Server™ Programming WebLogic Security Guide, Page 2-12; downloaded from the BEA Website: www.bea.com.Web site] 
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Appendix B—Mapping WebLogic Group Names with J2EE Security Role Names


[bookmark: OLE_LINK25][bookmark: OLE_LINK26]The following table supersedes the role_mapping_worksheet.xls as delivered with XU_8_749. The role_mapping_worksheet.xls Microsoft Excel spreadsheet is located in the following directory:
<STAGING_FOLDER>\kaajee-1.2.0.xxx\dd_examples

[bookmark: _Hlt200358995]
[bookmark: _Toc167811525]Table B-1. Sample spreadsheet showing a mapping between WebLogic group names and J2EE security role names
	VistA Security Key Name
	WebLogic Group Name
(via WebLogic Console)
	<security-role-assignment>
subelement <principal-name>
(i.e., group name)

From: WebLogic group name...
(weblogic.xml)
	<security-role-assignment>
subelement <role-name>

...To: J2EE security role name
(weblogic.xml)
	J2EE <security-role>
role-name
(web.xml, ejb-jar.xml, application.xml)

	<--------------- (WebLogic Group Names [a.k.a. Principals]) -------------->
	<---------------- (J2EE Security Role Names) ------------------->

	DG-CLERK
	DG-CLERK
	DG-CLERK
	CLERK
	CLERK

	DG-SUPERVISOR
	DG-SUPERVISOR
	DG-SUPERVISOR
	SUPER
	SUPER

	DG-ADMIN
	DG-ADMIN
	DG-ADMIN
	ADMIN
	ADMIN




	[image: Note]
	NOTE: The <security-role-assignment> elements in the weblogic.xml file are not needed when the <role-name> element and the <principal-name> element are the same. By default, WebLogic automatically creates a group of the same name if no mapping is defined in weblogic.xml.
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